Patents by Inventor Balasundar Iyyavu Raju

Balasundar Iyyavu Raju has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190150889
    Abstract: The invention relates to an ultrasound system (100) for sequentially performing a predetermined procedure for each of at least one region of interest. The ultrasound system (100) comprises an ultrasound probe (101) configured to transmit a first ultrasound signal (SG1) towards a region of interest and receive echo signals from the region of interest. The ultrasound system (100) also comprises a motion sensor (102) configured to detect a motion of the ultrasound probe (101) and generate a motion signal (MS) for indicating the motion of the ultrasound probe (101). The ultrasound system (100) also comprises a processor (103) configured to perform a predetermined procedure for a region of interest on the basis of the echo signals received from the region of interest if the motion signal (MS) indicates that the ultrasound probe (101) is stationary. The invention also relates to a corresponding ultrasound method.
    Type: Application
    Filed: December 19, 2016
    Publication date: May 23, 2019
    Inventors: JINGPING XU, BALASUNDAR IYYAVU RAJU, SHOUGANG WANG, MCKEE DUNN POLAND, ANTHONY M. GADES
  • Patent number: 10292679
    Abstract: A fetal movement monitoring method that limits the ultrasound radiation to safe levels and conforms to the ALARA principle is disclosed. The disclosed method of monitoring fetal movements by Doppler ultrasound comprises accumulating the time for which ultrasound is radiated into a subject, comparing the accumulated time with a first reference total time, counting the number of fetal movements in the subject, comparing the number of movements with a reference number, deciding at least one of a further action of the device and an action to be recommended to the subject and conveying at least one of a further action of the device, an information to the subject about the counted fetal movements and an action recommended to the subject. A Doppler ultrasound device for monitoring fetal movements in a subject is also disclosed.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: May 21, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Chetan Mittal, Balasundar Iyyavu Raju
  • Publication number: 20180344293
    Abstract: Extracorporeal motion (130) relative to a medical subject being imaged is detected, through the imaging or from motion detectors on the imaging probe, and either backed out of the medical images so that it can be determined whether lung sliding exists or measured to determine whether lung sliding detection is to be suspended due to excessive extracorporeal motion. Image sub-regions (164, 168) corresponding to respective ones of the images are selected for image-to-image comparison such that the selected sub-regions contain only body tissue that is, with respect to imaging depth in the acquiring of the images, shallower than an anatomical landmark within the images. Based on a result of the comparing, lung sliding detection that entails examining image data deeper than the landmark may be initialized.
    Type: Application
    Filed: September 13, 2016
    Publication date: December 6, 2018
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Balasundar Iyyavu Raju, Jingping Xu, Shougang Wang, Shiwei Zhou, Anthony M. Gades
  • Patent number: 10099044
    Abstract: A device for delivery of a substance (144) using energy to protect, at a site of activation, against a side effect of another substance (156) that was delivered, is being delivered, and/or will be delivered, at another site. The activation may be non-invasive, remote and the energy beam (140) may be an ultrasound beam. A first of the substances can be activated at a particular energy level, and the second is then activated at a lower level so that a population of particles bearing the first substance is not inadvertently activated during activation of the second substance. The device may comprise a system to control the levels of energy applied.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: October 16, 2018
    Assignee: Koninklijke Philips N.V.
    Inventors: Balasundar Iyyavu Raju, Christopher Stephen Hall, Ralf Seip, Todd Nicholas Erpelding
  • Publication number: 20180286518
    Abstract: A patient monitoring device includes at least one physiological sensor (32) configured to acquire at least one measured value for a patient of at least one monitored physiological variable. A cardiovascular (CV), pulmonary, or cardiopulmonary (CP) modeling component (42) includes a microprocessor pro-programmed to: receive the measured values of the at least one monitored physiological variable; receive a value for at least one patient-specific medical image parameter generated from at least one medical image of the patient; compute values for the patient of unmonitored physiological variables based on the measured values for the patient of the monitored physiological variables and the patient-specific medical image parameter; and at least one of (1) display the computed values and (2) control a therapy device delivering therapy to the patient based on the computed values.
    Type: Application
    Filed: October 7, 2016
    Publication date: October 4, 2018
    Inventors: Balasundar Iyyavu Raju, Nicolas Wadih Chbat, Emil George Radulescu
  • Patent number: 10034658
    Abstract: A medical imaging probe (102) for contact with an imaging subject includes an indicium placement apparatus for, while the probe is in contact, selectively performing an instance of marking the subject so as to record a position of the probe. The device may further include a feedback module for determining whether an orientation, with respect to a the mark, that currently exists for a medical imaging probe of the device meets a criterion of proximity to a predetermined orientation. Responsive to the determination that the criterion is met, a quantitative evaluation may be made automatically and without need for user intervention, via live imaging via the probe, of a lesion that was, prior to the determination, specifically identified for the evaluation. Change, such as growth (116), in the lesion, like a brain lesion, may thereby be tracked over consistent sequential imaging acquisitions, such as through ultrasound.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: July 31, 2018
    Assignee: Koninklijke Philips N.V.
    Inventors: Balasundar Iyyavu Raju, William Tao Shi, Francois Guy Gerard Marie Vignon
  • Publication number: 20180185040
    Abstract: An infusion system for sonothrombolysis treatment uses a syringe loaded with a microbubble solution and operated by a syringe pump to deliver the microbubble solution to a subject during sonothrombolysis treatment. To prevent the stratification of the microbubble solution in the barrel of the syringe during treatment, the barrel also contains a plurality of magnetic beads which are agitated into semi-random patterns of motion in the syringe chamber during the procedure. The magnetic beads are moved by magnetic attraction and repulsion from the moving magnets of a magnetic stirrer mounted in proximity to the syringe during treatment.
    Type: Application
    Filed: June 23, 2016
    Publication date: July 5, 2018
    Inventors: Ralf Seip, Evgeniy Leyvi, Balasundar Iyyavu Raju
  • Patent number: 10004479
    Abstract: The invention relates to a temperature distribution determining apparatus (21) for determining a temperature distribution within an object, to which energy is applied, by using an energy application element (2). A first temperature distribution is measured in a first region within a first temperature range and a model describing a model temperature distribution in the first region and in a second region depending on modifiable model parameters is provided. A second temperature distribution is estimated in the second region within a second temperature range, while the energy is applied to the object, by modifying the model parameters such that a deviation of the model temperature distribution from the first temperature distribution in the first region is minimized.
    Type: Grant
    Filed: November 11, 2013
    Date of Patent: June 26, 2018
    Assignee: Koninklijke Philips N.V.
    Inventors: Ajay Anand, Shriram Sethuraman, Balasundar Iyyavu Raju, Junbo Li
  • Patent number: 9918696
    Abstract: Existing gas pocket detection approaches are based on visual observations of B-mode ultrasound images showing comparisons between normal soft tissue and gas pockets, which are time-consuming and dependent on operator experience. The present invention proposes an ultrasound system and a method of detecting a gas pocket. The ultrasound system comprises: an ultrasound probe (110) for transmitting an ultrasound signal toward the ROI and acquiring an ultrasound echo signal reflected from the ROI along a plurality of scanning lines; an obtaining unit (130) for obtaining a second harmonic component of the ultrasound echo signal for each depth of a plurality of depths along each scanning line of the plurality of scanning lines; and a deriving unit (140) for deriving a change in a center frequency of the second harmonic component along with the depth.
    Type: Grant
    Filed: January 13, 2015
    Date of Patent: March 20, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Jingping Xu, Balasundar Iyyavu Raju, Sheng-Wen Huang, Shougang Wang, Emil George Radulescu, Shiwei Zhou
  • Publication number: 20180014810
    Abstract: The present invention proposes an ultrasound system and method of identifying a vessel of a subject. The ultrasound system comprises: an ultrasound probe configured to simultaneously acquire a sequence of ultrasound blood flow data frames (such as a sequence of ultrasound Doppler data frames) and a sequence of ultrasound B-mode data frames of a region of interest including the vessel over a predetermined time period; a blood flow region selecting unit configured to select a blood flow region in the sequence of blood flow data frames; and a vessel segmenting unit configured to segment the vessel in at least one frame of the sequence of ultrasound B-mode data frames based on the selected blood flow region. Since there is no need to manually place any seed point for vessel segmentation any more, the user dependency is reduced and a fast measurement is made possible.
    Type: Application
    Filed: March 31, 2016
    Publication date: January 18, 2018
    Inventors: Jiangang Chen, Balasundar Iyyavu Raju, Evgeniy Leyvi
  • Publication number: 20170273658
    Abstract: Ultrasound-based acoustic streaming for deciding whether material is fluid is dependent upon any one or more of a variety of criteria. Examples are displacement, speed (230), temporal or spatial flow variance, progressive decorrelation, slope or straightness of accumulated signal to background comparisons over time, and relative displacement to adjacent soft tissue. Echogenicity-based area identification is combinable with the above movement characteristic detection in the deciding. Fluid pool identification is performable from the area-limited acoustic streaming testing and ultrasound attenuation readings. Candidates from among the areas (210) are screenable based on specific shapes or bodily organs detected. Natural flow can be excluded from streaming detection by identification of blood vessels (206). Processing for each FAST ultrasound view (202), or for the entire procedure, is performable automatically, without need for user intervention or with user intervention to identify suspected areas.
    Type: Application
    Filed: August 12, 2015
    Publication date: September 28, 2017
    Inventors: Shougang Wang, Balasundar Iyyavu Raju, Shiwei Zhou, Jingping Xu
  • Publication number: 20170273659
    Abstract: The embodiments disclose an ultrasound system comprising: a probe configured to obtain ultrasound data relating to scanning region including at least part of a pleural interface of a lung; and a data analyzer, configured to automatically detect information for determining lung sliding and/or lung point using one or more cross correlation maps derived from the data. The embodiments also disclose a method thereof.
    Type: Application
    Filed: September 22, 2015
    Publication date: September 28, 2017
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: JINGPING XU, BALASUNDAR IYYAVU RAJU, SHOUGANG WANG, SHIWEI ZHOU
  • Patent number: 9643000
    Abstract: Bubble presence within a region is monitored to determine if a predetermined condition is met such as whether the presence is of sufficient magnitude, the bubbles being subject to energizing (240). In some embodiments, the energizing only occurs when time- wise preceded by the determination (S508, S510). The determining can include measuring a grayscale value (104), or assessing the energy carried by a frequency component of the echo signal, in the region in real time. The energizing may occur region-by-region, automatically and without need for user intervention, in a treatment pass (S428) over the regions. The regions (232) in the pass might be subject to respective instances of the energizing without intervening monitoring, or, in another embodiment, to both the determining and the responsive energizing. The determining can be subject to, automatically and without need for user intervention, interruption (S408) and concurrent switching to a next region.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: May 9, 2017
    Assignee: Koninklijke Philips N.V.
    Inventors: Ralf Seip, Balasundar Iyyavu Raju, Evgeniy Leyvi
  • Publication number: 20160345931
    Abstract: Existing gas pocket detection approaches are based on visual observations of B-mode ultrasound images showing comparisons between normal soft tissue and gas pockets, which are time-consuming and dependent on operator experience. The present invention proposes an ultrasound system and a method of detecting a gas pocket. The ultrasound system comprises: an ultrasound probe (110) for transmitting an ultrasound signal toward the ROI and acquiring an ultrasound echo signal reflected from the ROI along a plurality of scanning lines; an obtaining unit (130) for obtaining a second harmonic component of the ultrasound echo signal for each depth of a plurality of depths along each scanning line of the plurality of scanning lines; and a deriving unit (140) for deriving a change in a center frequency of the second harmonic component along with the depth.
    Type: Application
    Filed: January 13, 2015
    Publication date: December 1, 2016
    Inventors: JINGPING XU, BALASUNDAR IYYAVU RAJU, SHENG-WEN HUANG, SHOUGANG WANG, EMIL GEORGE RADULESCU, SHIWEI ZHOU
  • Patent number: 9399148
    Abstract: The invention relates to a therapeutic system which comprises an ultrasound therapy unit (1, 518) arranged to insonify at least a portion of a body (2, 508) of a patient with high intensity ultrasound and a MR imaging unit (3, 500) arranged to acquire MR signals from the portion of the body (2, 508) and to reconstruct a thermographic MR image from the MR signals. It is an object of the invention to enable MR guided high intensity focused ultrasound (HIFU) treatment, in which temperature values within critical anatomic regions containing fat can be monitored. The invention proposes that the therapeutic system further comprises an ultrasound diagnostic unit (5, 518) which is arranged to acquire ultrasound signals from the portion of the body (2, 508) and to derive at least one local temperature value from the ultrasound signals.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: July 26, 2016
    Assignee: Koninklijke Philips N.V.
    Inventors: Ajay Anand, Gosta Jakob Ehnholm, Balasundar Iyyavu Raju
  • Publication number: 20160131540
    Abstract: The invention relates to a temperature distribution measuring apparatus for measuring a temperature distribution within an object caused by heating the object. A temperature distribution measuring unit (13, 71) measures the temperature distribution in a measurement region within the object, while the object is heated, and a temperature measurement control unit (22) controls the temperature distribution measuring unit such that the measurement region is modified depending on the measured temperature distribution, in order to measure different temperature distributions in different measurement regions.
    Type: Application
    Filed: June 20, 2014
    Publication date: May 12, 2016
    Inventors: AJAY ANAND, BALASUNDAR IYYAVU RAJU, SHRIRAM SETHURAMAN, JUNBO LI, JOHN PETRUZZELLO
  • Publication number: 20160000411
    Abstract: A medical imaging probe (102) for contact with an imaging subject includes an indicium placement apparatus for, while the probe is in contact, selectively performing an instance of marking the subject so as to record a position of the probe. The device may further include a feed-back module for determining whether an orientation, with respect to a the mark, that currently exists for a medical imaging probe of the device meets a criterion of proximity to a predetermined orientation. Responsive to the determination that the criterion is met, a quantitative evaluation may be made automatically and without need for user intervention, vis live imaging via the probe, of a lesion that was, prior to the determination, specifically identified for the evaluation. Change, such as growth (116), in the lesion, like a brain lesion, may thereby be tracked over consistent sequential imaging acquisitions, such as through ultrasound.
    Type: Application
    Filed: February 25, 2014
    Publication date: January 7, 2016
    Inventors: BALASUNDAR IYYAVU RAJU, WILLIAM TAO SHI, FRANCOIS GUY GERARD MARIE VIGNON
  • Publication number: 20160000398
    Abstract: Dynamically identifying a stationary body of fluid (102) within a test volume by scanning within the volume can entail using a first part of a pulse sequence to acoustically interrogate a region within the volume to detect pre-existing movement (124) and, via a separate acoustic interrogation constituting the second part of the pulse sequence, acoustically interrogating the region to distinguish solid from fluid. The scanning is with both interrogations as a unit, so as to span the volume with the interrogations. The body is identified, dynamically based on an outcome of the interrogations. The scanning may span, for the identifying, a current field of view (116), including normal tissue, within an imaging subject. The procedure, from scanning to identifying, may be performed automatically and without need for user intervention, although the user can optionally change the field of view to further search for stationary fluid.
    Type: Application
    Filed: February 26, 2014
    Publication date: January 7, 2016
    Inventors: BALASUNDAR IYYAVU RAJU, AJAY ANAND, JOHN PETRUZZELLO
  • Publication number: 20150282786
    Abstract: The invention relates to a temperature distribution determining apparatus (21) for determining a temperature distribution within an object, to which energy is applied, by using an energy application element (2). A first temperature distribution is measured in a first region within a first temperature range and a model describing a model temperature distribution in the first region and in a second region depending on modifiable model parameters is provided. A second temperature distribution is estimated in the second region within a second temperature range, while the energy is applied to the object, by modifying the model parameters such that a deviation of the model temperature distribution from the first temperature distribution in the first region is minimized.
    Type: Application
    Filed: November 11, 2013
    Publication date: October 8, 2015
    Inventors: Ajay Anand, Shriram Sethuraman, Balasundar Iyyavu Raju, Junbo Li
  • Publication number: 20140249469
    Abstract: Bubble presence within a region is monitored to determine if a predetermined condition is met such as whether the presence is of sufficient magnitude, the bubbles being subject to energizing (240). In some embodiments, the energizing only occurs when time- wise preceded by the determination (S508, S510). The determining can include measuring a grayscale value (104), or assessing the energy carried by a frequency component of the echo signal, in the region in real time. The energizing may occur region-by-region, automatically and without need for user intervention, in a treatment pass (S428) over the regions. The regions (232) in the pass might be subject to respective instances of the energizing without intervening monitoring, or, in another embodiment, to both the determining and the responsive energizing. The determining can be subject to, automatically and without need for user intervention, interruption (S408) and concurrent switching to a next region.
    Type: Application
    Filed: August 29, 2012
    Publication date: September 4, 2014
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Ralf Seip, Balasundar Iyyavu Raju, Evgeniy Leyvi