Patents by Inventor Bang-Ying Yu

Bang-Ying Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250092564
    Abstract: Disclosed is a device for preparing a silicon carbide crystal including a crucible and a crystal expansion guide assembly. The crucible includes a crucible body and a crucible cover fixing a seed and covering the crucible body. The crystal expansion guide assembly includes a frame member and a tubular core member. The frame member is fixed to the crucible body, located between the crucible cover and a raw material accommodated in the crucible body, and provided with a through hole with a diameter greater than a diameter of a growth surface of the seed. The tubular core member is mechanically connected to an inner wall of the through hole. During a crystal growth process, the tubular core member falls off due to contact with a growth front of a crystal. The frame member does not react with the crystal. Thus, a large-sized crystal ingot with high quality can be obtained.
    Type: Application
    Filed: September 16, 2024
    Publication date: March 20, 2025
    Inventors: Dai-Liang MA, Bang-Ying YU, Bo-Cheng LIN
  • Publication number: 20250092570
    Abstract: Disclosed is a silicon carbide crystal growth system including a crucible, a heating device and a seed holder. The crucible includes a crucible body and a crucible cover covering the crucible body. The heating device includes a quartz tube and an induction coil spirally wound on an outer wall of the quartz tube. The crucible is disposed in the quartz tube. The crucible is disposed coaxially with the quartz tube. The seed holder is disposed on the crucible cover and includes a seed holding surface for holding an off-axis seed and is perpendicular to a central axis of the crucible, and an angle between a normal direction of the induction coil and a growth direction of the off-axis seed is between 0 degrees and 10 degrees, so that a silicon carbide crystal grows from the off-axis seed along isotherms provided by the induction coil, thereby obtaining a silicon carbide boule.
    Type: Application
    Filed: September 16, 2024
    Publication date: March 20, 2025
    Inventors: Dai-Liang MA, Bang-Ying YU, Bo-Cheng LIN
  • Publication number: 20250092573
    Abstract: Disclosed is a method for purifying a graphite material, which includes the following steps of: after placing the graphite material in a graphite crucible, placing the graphite crucible into a heating furnace; after vacuuming the heating furnace, filling the heating furnace with a protective atmosphere, and controlling a pressure in the heating furnace to be less than 5 Torr; and heating the graphite crucible, by a heater disposed in the heating furnace, to control a temperature of the graphite crucible to be at least higher than melting point temperatures of some metal impurities in the graphite material for a preset time period, so that the some metal impurities in the graphite material are volatilized or carbonized, and the graphite crucible is purified. Therefore, while the graphite material is purified under a condition with high vacuum, high temperature and low pressure, the graphite crucible is also purified.
    Type: Application
    Filed: September 16, 2024
    Publication date: March 20, 2025
    Inventors: Dai-Liang MA, Bang-Ying YU, Bo-Cheng LIN
  • Patent number: 12098477
    Abstract: The present disclosure provides a manufacturing method of semi-insulating single-crystal silicon carbide powder comprising: providing a semi-insulating single-crystal silicon carbide bulk, wherein the semi-insulating single-crystal silicon carbide bulk has a first silicon-vacancy concentration, and the first silicon-vacancy concentration is greater than 5E11 cm{circumflex over (?)}?3; refining the semi-insulating single-crystal silicon carbide bulk to obtain a semi-insulating single-crystal silicon carbide coarse particle, wherein the semi-insulating single-crystal silicon carbide coarse particle has a second silicon-vacancy concentration and a first particle diameter, the second silicon-vacancy concentration is greater than 5E11 cm{circumflex over (?)}?3, and the first particle diameter is between 50 ?m and 350 ?m; self-impacting the semi-insulating single-crystal silicon carbide coarse particle to obtain a semi-insulating single-crystal silicon carbide powder, wherein the semi-insulating single-crystal sili
    Type: Grant
    Filed: June 3, 2021
    Date of Patent: September 24, 2024
    Assignee: TAISIC MATERIALS CORP.
    Inventors: Dai-Liang Ma, Bang-Ying Yu, Bo-Cheng Lin
  • Patent number: 11661675
    Abstract: The present disclosure provides high-purity semi-insulating single-crystal silicon carbide wafer and crystal which include one polytype single crystal. The semi-insulating single-crystal silicon carbide wafer has silicon vacancy inside, wherein the silicon-vacancy concentration is greater than 5E11 cm{circumflex over (?)}-3.
    Type: Grant
    Filed: June 3, 2021
    Date of Patent: May 30, 2023
    Assignee: TAISIC MATERIALS CORP.
    Inventors: Dai-Liang Ma, Bang-Ying Yu, Bo-Cheng Lin
  • Publication number: 20210395919
    Abstract: The present disclosure provides a manufacturing method of semi-insulating single-crystal silicon carbide powder comprising: providing a semi-insulating single-crystal silicon carbide bulk, wherein the semi-insulating single-crystal silicon carbide bulk has a first silicon-vacancy concentration, and the first silicon-vacancy concentration is greater than 5E11 cm{circumflex over (?)}?3; refining the semi-insulating single-crystal silicon carbide bulk to obtain a semi-insulating single-crystal silicon carbide coarse particle, wherein the semi-insulating single-crystal silicon carbide coarse particle has a second silicon-vacancy concentration and a first particle diameter, the second silicon-vacancy concentration is greater than 5E11 cm{circumflex over (?)}?3, and the first particle diameter is between 50 ?m and 350 ?m; self-impacting the semi-insulating single-crystal silicon carbide coarse particle to obtain a semi-insulating single-crystal silicon carbide powder, wherein the semi-insulating single-crystal sili
    Type: Application
    Filed: June 3, 2021
    Publication date: December 23, 2021
    Applicant: TAISIC MATERIALS CORP.
    Inventors: Dai-Liang MA, Bang-Ying YU, Bo-Cheng LIN
  • Publication number: 20210395918
    Abstract: The present disclosure provides high-purity semi-insulating single-crystal silicon carbide wafer and crystal which include one polytype single crystal. The semi-insulating single-crystal silicon carbide wafer has silicon vacancy inside, wherein the silicon-vacancy concentration is greater than 5E11 cm{circumflex over (?)}-3.
    Type: Application
    Filed: June 3, 2021
    Publication date: December 23, 2021
    Applicant: TAISIC MATERIALS CORP.
    Inventors: Dai-Liang MA, Bang-Ying YU, Bo-Cheng LIN
  • Publication number: 20210395917
    Abstract: The present disclosure provides semi-insulating single-crystal silicon carbide bulk material and powder which include one polytype single crystal. The semi-insulating single-crystal silicon carbide bulk material has silicon vacancy inside, wherein the silicon-vacancy concentration is greater than 5E11 cm{circumflex over (?)}?3.
    Type: Application
    Filed: June 3, 2021
    Publication date: December 23, 2021
    Applicant: TAISIC MATERIALS CORP.
    Inventors: Dai-Liang MA, Bang-Ying YU, Bo-Cheng LIN
  • Patent number: 11130152
    Abstract: A method for the formation of tantalum carbides on a graphite substrate includes the steps of: (a) adding an organic tantalum compound, a chelating agent, a pre-polymer to an organic solvent to form a tantalum polymeric solution; (b) subjecting a graphite substrate with the tantalum polymeric solution to a curing process to form a polymeric tantalum film on the graphite substrate; and (c) subjecting the polymeric tantalum film on the graphite substrate in an oven to a pyrolytic reaction in the presence of a protective gas to obtain a protective tantalum carbide on the graphite substrate.
    Type: Grant
    Filed: November 28, 2019
    Date of Patent: September 28, 2021
    Assignee: National Chung-Shan Institute of Science and Technology
    Inventors: Cheng-Jung Ko, Jun-Bin Huang, Chih-Wei Kuo, Dai-Liang Ma, Bang-Ying Yu
  • Patent number: 11072871
    Abstract: A preparation apparatus for uniform silicon carbide crystals comprises a circular cylinder, a doping tablet, and a plate to stabilize and control the supply of dopants. The accessory does not participate in the reaction in the growth chamber but maintains its efficacy during growth. Finally, a single semi-insulating silicon carbide crystal with uniform electrical characteristics can be obtained.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: July 27, 2021
    Assignee: National Chung-Shan Institute of Science and Technology
    Inventors: Chih-Wei Kuo, Dai-Liang Ma, Chia-Hung Tai, Bang-Ying Yu, Cheng-Jung Ko, Bo-Cheng Lin, Hsueh-I Chen
  • Patent number: 11049717
    Abstract: A method for fabricating an ultra-thin graphite film on a silicon carbide substrate includes the steps of: (A) providing a polyamic acid solution and a siloxane-containing coupling agent for polymerizing under an inert gas atmosphere to form a siloxane-coupling-group-containing polyamic acid solution; (B) performing a curing process after applying the siloxane-coupling-group-containing polyamic acid solution to a silicon carbide substrate; (C) placing the silicon carbide substrate in a graphite crucible before placing the graphite crucible in a reaction furnace to perform a carbonization process under an inert gas atmosphere; (D) subjecting the silicon carbide substrate to a graphitization process to obtain a graphite film, thereby make it possible to fabricate an ultra-thin graphite film of high-quality on the surface of silicon carbide in a lower graphitization temperature range.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: June 29, 2021
    Assignee: National Chung-Shan Institute of Science and Technology
    Inventors: Dai-Liang Ma, Cheng-Jung Ko, Chia-Hung Tai, Jun-Bin Huang, Bang-Ying Yu
  • Publication number: 20210189590
    Abstract: A preparation apparatus for uniform silicon carbide crystals comprises a circular cylinder, a doping tablet, and a plate to stabilize and control the supply of dopants. The accessory does not participate in the reaction in the growth chamber but maintains its efficacy during growth. Finally, a single semi-insulating silicon carbide crystal with uniform electrical characteristics can be obtained.
    Type: Application
    Filed: December 20, 2019
    Publication date: June 24, 2021
    Inventors: Chih-Wei Kuo, Dai-Liang Ma, Chia-Hung Tai, Bang-Ying Yu, Cheng-Jung Ko, Bo-Cheng Lin, Hsueh-I Chen
  • Publication number: 20210162453
    Abstract: A method for the formation of tantalum carbides on a graphite substrate includes the steps of: (a) adding an organic tantalum compound, a chelating agent, a pre-polymer to an organic solvent to form a tantalum polymeric solution; (b) subjecting a graphite substrate with the tantalum polymeric solution to a curing process to form a polymeric tantalum film on the graphite substrate; and (c) subjecting the polymeric tantalum film on the graphite substrate in an oven to a pyrolytic reaction in the presence of a protective gas to obtain a protective tantalum carbide on the graphite substrate.
    Type: Application
    Filed: November 28, 2019
    Publication date: June 3, 2021
    Inventors: Cheng-Jung Ko, Jun-Bin Huang, Chih-Wei Kuo, Dai-Liang Ma, Bang-Ying Yu
  • Publication number: 20200203162
    Abstract: A method for fabricating an ultra-thin graphite film on a silicon carbide substrate includes the steps of: (A) providing a polyamic acid solution and a siloxane-containing coupling agent for polymerizing under an inert gas atmosphere to form a siloxane-coupling-group-containing polyamic acid solution; (B) performing a curing process after applying the siloxane-coupling-group-containing polyamic acid solution to a silicon carbide substrate; (C) placing the silicon carbide substrate in a graphite crucible before placing the graphite crucible in a reaction furnace to perform a carbonization process under an inert gas atmosphere; (D) subjecting the silicon carbide substrate to a graphitization process to obtain a graphite film, thereby make it possible to fabricate an ultra-thin graphite film of high-quality on the surface of silicon carbide in a lower graphitization temperature range.
    Type: Application
    Filed: December 21, 2018
    Publication date: June 25, 2020
    Inventors: Dai-Liang Ma, Cheng-Jung Ko, Chia-Hung Tai, Jun-Bin Huang, Bang-Ying Yu
  • Patent number: 10612159
    Abstract: A device for measuring distribution of thermal field in a crucible comprises a crucible comprising an upper lid, a body, a growth chamber and a material source zone; a thermally insulating material disposed outside the crucible; a movable heating component for heating the crucible; a plurality of thermocouples enclosed by insulating, high temperature resistant material and disposed in the crucible after being inserted into a plurality of holes on the upper lid to measure distribution of thermal field in the crucible. The thermocouples enclosed by insulating, high temperature resistant material are effective in measuring and adjusting temperature distribution in the crucible to achieve optimal temperature distribution for crystal growth in the crucible.
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: April 7, 2020
    Assignee: NATIONAL CHUNG SHAN INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Dai-Liang Ma, Tsao-Chun Peng, Cheng-Jung Ko, Bang-Ying Yu, Chih-Wei Kuo, Ying-Cong Zhao
  • Publication number: 20190186045
    Abstract: A device for growing a carbide of specific shape includes (A) a crucible; (B) a raw material source zone where a SiC raw material precursor is accessible; (C) a deposition zone where SiC is grown; (D) a gas temperature gradient control zone characterized by a temperature gradient; (E) a current deposition carrier disposed within the deposition zone and characterized by at least one repetition of a succession of one or at least two specific shapes of the current deposition carrier; and (F) a heating component for heating the SiC raw material precursor to turn it into gas molecules, so as to effectuate its deposition on the current deposition carrier.
    Type: Application
    Filed: February 26, 2018
    Publication date: June 20, 2019
    Inventors: BANG-YING YU, HSUEH-I CHEN, DAI-LIANG MA, CHENG-JUNG KO
  • Publication number: 20190186043
    Abstract: A device for measuring distribution of thermal field in a crucible comprises a crucible comprising an upper lid, a body, a growth chamber and a material source zone; a thermally insulating material disposed outside the crucible; a movable heating component for heating the crucible; a plurality of thermocouples enclosed by insulating, high temperature resistant material and disposed in the crucible after being inserted into a plurality of holes on the upper lid to measure distribution of thermal field in the crucible. The thermocouples enclosed by insulating, high temperature resistant material are effective in measuring and adjusting temperature distribution in the crucible to achieve optimal temperature distribution for crystal growth in the crucible.
    Type: Application
    Filed: March 7, 2018
    Publication date: June 20, 2019
    Inventors: DAI-LIANG MA, TSAO-CHUN PENG, CHENG-JUNG KO, BANG-YING YU, CHIH-WEI KUO, YING-CONG ZHAO
  • Patent number: 10246334
    Abstract: A method of producing a heterophase graphite, including the steps of (A) providing a silicon carbide single-crystal substrate; (B) placing the silicon carbide single-crystal substrate in a graphite crucible and then in a reactor to undergo an air extraction process; and (C) performing a desilicification reaction on the silicon carbide single-crystal substrate in an inert gas atmosphere to obtain 2H graphite and 3R graphite, so as to directly produce lumpy (sheetlike, crushed, particulate, and powderlike) 2H graphite and 3R graphite, and preclude secondary contamination of raw materials which might otherwise occur because of a crushing step, an oxidation step, and an acid rinsing step.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: April 2, 2019
    Assignee: NATIONAL CHUNG SHAN INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Dai-Liang Ma, Cheng-Jung Ko, Bang-Ying Yu, Tsao-Chun Peng
  • Publication number: 20180179065
    Abstract: A method of producing a heterophase graphite, including the steps of (A) providing a silicon carbide single-crystal substrate;(B) placing the silicon carbide single-crystal substrate in a graphite crucible and then in a reactor to undergo an air extraction process; and (C) performing a desilicification reaction on the silicon carbide single-crystal substrate in an inert gas atmosphere to obtain 2H graphite and 3R graphite, so as to directly produce lumpy (sheetlike, crushed, particulate, and powderlike) 2H graphite and 3R graphite, and preclude secondary contamination of raw materials which might otherwise occur because of a crushing step, an oxidation step, and an acid rinsing step.
    Type: Application
    Filed: February 16, 2017
    Publication date: June 28, 2018
    Inventors: DAI-LIANG MA, CHENG-JUNG KO, BANG-YING YU, TSAO-CHUN PENG
  • Publication number: 20180087186
    Abstract: A method of producing a carbide raw material includes the steps of (A) providing a porous carbon material and a high-purity silicon raw material or a metal raw material and applying the porous carbon material and the high-purity silicon raw material or a metal raw material alternately to form a layer structure; (B) putting the layer structure in a synthesis furnace to undergo a gas evacuation process; and (C) producing a carbide raw material with a synthesis reaction which the layer structure undergoes in an inert gas atmosphere, wherein the carbide raw material is a carbide powder of a particle diameter of less than 300 ?m, thereby preventing secondary raw material contamination otherwise arising from comminution, oxidation and acid rinsing.
    Type: Application
    Filed: November 15, 2016
    Publication date: March 29, 2018
    Inventors: CHENG-JUNG KO, DAI-LIANG MA, BO-CHENG LIN, HSUEH-I CHEN, BANG-YING YU, SHU-YU YEH