Patents by Inventor Baoguo XU

Baoguo XU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240094072
    Abstract: A miniature combined multi-axis force sensor structure includes a sensor body, a first shell and a second shell, two horizontal main beams and two vertical main beams are arranged on the periphery of an inner round platform in a cross shape, tail ends of the horizontal main beams and the vertical main beams are each connected to a vertical floating beam, and the horizontal floating beams consist of two thin-walled cambered beams; two ends of the horizontal floating beam are each connected to an outer round platform by means of an annular platform; the sensor body is arranged between the first shell and the second shell; strain gauges are stuck on the horizontal main beams and the vertical main beams to form two Wheatstone bridges; and when force/torque acts on the cross beam, the sensor deforms, and the resistance value of strain gauge at corresponding position changes.
    Type: Application
    Filed: May 12, 2022
    Publication date: March 21, 2024
    Applicant: SOUTHEAST UNIVERSITY
    Inventors: Aiguo SONG, Jingjing XU, Shuyan YANG, Baoguo XU, Huijun LI, Ruqi MA
  • Patent number: 11920993
    Abstract: A miniature combined multi-axis force sensor structure includes a sensor body, a first shell and a second shell, two horizontal main beams and two vertical main beams are arranged on the periphery of an inner round platform in a cross shape, tail ends of the horizontal main beams and the vertical main beams are each connected to a vertical floating beam, and the horizontal floating beams consist of two thin-walled cambered beams; two ends of the horizontal floating beam are each connected to an outer round platform by means of an annular platform; the sensor body is arranged between the first shell and the second shell; strain gauges are stuck on the horizontal main beams and the vertical main beams to form two Wheatstone bridges; and when force/torque acts on the cross beam, the sensor deforms, and the resistance value of strain gauge at corresponding position changes.
    Type: Grant
    Filed: May 12, 2022
    Date of Patent: March 5, 2024
    Assignee: SOUTHEAST UNIVERSITY
    Inventors: Aiguo Song, Jingjing Xu, Shuyan Yang, Baoguo Xu, Huijun Li, Ruqi Ma
  • Patent number: 11867578
    Abstract: The present invention discloses a high-precision and miniaturized on-orbit calibration device for a six-dimensional force sensor of a space station manipulator and a calibration method thereof, which include an inverted ? shape fixing bracket, three force applying devices, and a cubic stress block. Each force applying device includes a force applying head, a single axis force sensor, a force source part and a fastening part. The force source part includes an upper support plate, a second electrode plate, piezoelectric ceramic plates, a first electrode plate and a lower support plate, which are coaxially arranged sequentially from top to bottom. The single axis force sensor is mounted on the top of the upper support plate, and the hemispherical force applying head is mounted on the top of the single axis force sensor. The cubic stress block is mounted on the top of the six-dimensional force sensor.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: January 9, 2024
    Assignee: SOUTHEAST UNIVERSITY
    Inventors: Aiguo Song, Shuyan Yang, Baoguo Xu, Yonghui Zhou, Qimeng Tan, Changchun Liang, Ming Wei, Chunhui Wang, Fan Li, Suinan Zhang
  • Patent number: 11771613
    Abstract: A robot system for active and passive upper limb rehabilitation training based on a force feedback technology includes a robot body and an active and passive training host computer system. Active and passive rehabilitation training may be performed at degrees of freedom such as adduction/abduction and flexion/extension of left and right shoulder joints, and flexion/extension of left and right elbow joints according to a condition of a patient. In a passive rehabilitation training mode, the robot body drives the upper limb of the patient to move according to a track specified by the host computer, to gradually restore a basic motion function of the upper limb. In an active rehabilitation training mode, the patient holds the tail ends of the robot body with both hands to interact with a rehabilitation training scene, and can feel real and accurate force feedback.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: October 3, 2023
    Assignee: SOUTHEAST UNIVERSITY
    Inventors: Aiguo Song, Yiting Mo, Huanhuan Qin, Huijun Li, Baoguo Xu
  • Patent number: 11717461
    Abstract: A palm-supported finger rehabilitation training device comprises a mounting base, a finger rehabilitation training mechanism mounted on the mounting base, and a driving mechanism for driving the finger rehabilitation training mechanism; wherein the finger rehabilitation training mechanism comprises four independent and structurally identical combined transmission devices for finger training corresponding to a forefinger, a middle finger, a ring finger and a little finger of a human hand, respectively, and the mounting base is provided with a supporting surface capable of supporting a human palm; wherein each combined transmission device for finger training comprises an MP movable chute, a PIP fingerstall, a DIP fingerstall and a connecting rod transmission mechanism; a force sensor is provided to acquire force feedback information to determine and control force stability, and a space sensor is provided to acquire space angle information to control space positions of fingers in real time.
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: August 8, 2023
    Assignee: SOUTHEAST UNIVERSITY
    Inventors: Aiguo Song, Jianwei Lai, Huijun Li, Hong Zeng, Baoguo Xu
  • Patent number: 11701289
    Abstract: A rehabilitation glove based on a bidirectional driver of a honeycomb imitating structure, including five bidirectional drivers and a cotton glove. The drivers are fixed to a back of the glove through hook and loop fasteners. Each driver includes a hollow buckling air bag in a continuous bent state, a middle guide layer in a continuous bent state and a hollow stretching air bag. The buckling air bag and the middle guide layer are symmetrically arranged, and the stretching air bag in a straightened state is arranged below the middle guide layer. A novel bidirectional driver of a honeycomb imitating structure is provided, which may provide a patient with rehabilitation training in two degrees of freedom: buckling and stretching. A control algorithm of the bidirectional driver is further provided to perform force control output for the driver, which may better help the patient recover hand functions.
    Type: Grant
    Filed: January 6, 2022
    Date of Patent: July 18, 2023
    Assignee: SOUTHEAST UNIVERSITY
    Inventors: Aiguo Song, Jianwei Lai, Huijun Li, Hong Zeng, Baoguo Xu, Ting Wu
  • Publication number: 20230211504
    Abstract: The present disclosure discloses an automated calibration system and calibration method for a flexible robot actuator. The calibration system includes a support frame. A visual positioning system, a pressure measuring system and a pneumatic pressure control system are respectively installed on the support frame. The visual positioning system is configured to measure a relative displacement and an angle between two ends of the flexible actuator. The pneumatic pressure control system is configured to charge air into an actuating end of the flexible actuator and measure an input pneumatic pressure of the flexible actuator. The pressure measuring system includes a pressure gauge installed on the support frame through a vertical axis motor system, and the flexible actuator to be calibrated installed on the support frame through a horizontal axis motor system and a rotating motor system.
    Type: Application
    Filed: January 6, 2022
    Publication date: July 6, 2023
    Inventors: Aiguo SONG, Jianwei LAI, Huijun LI, Hong ZENG, Baoguo XU
  • Patent number: 11690773
    Abstract: A wearable upper limb rehabilitation training robot with precise force control includes a wearable belt, a multi-degree-of-freedom robot arm, and a control box. The robot is worn on the waist of a person by using a belt, and driven by active actuators, to implement active and passive rehabilitation training in such degrees of freedom as adduction/abduction/anteflexion/extension of left and right shoulder joints and anteflexion/extension of left and right elbow joints. In addition, a force/torque sensor is mounted on a tip of the robot arm, to obtain a force between the tip of the robot arm and the human hand during rehabilitation training as a feedback signal, to adjust an operating state of the robot, thereby realizing the precise force control during the rehabilitation training.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: July 4, 2023
    Assignee: SOUTHEAST UNIVERSITY
    Inventors: Aiguo Song, Yiting Mo, Huanhuan Qin, Huijun Li, Baoguo Xu
  • Patent number: 11680863
    Abstract: A method for reducing hysteresis error and high frequency noise error of capacitive tactile sensors includes the following steps: step 1: calibration, specifically including positive stroke calibration to form n positive stroke curves and negative stroke calibration to form n negative stroke curves; step 2: averaging, specifically including positive stroke averaging to form an average positive stroke curve, negative stroke averaging to form an average negative stroke curve, and comprehensive averaging to form a comprehensive stroke curve; step 3: fitting modeling, to obtain a positive stroke fitting function, a negative stroke fitting function, and a comprehensive fitting function; step 4: measurement; step 5: noise filtering; step 6: stroke direction discrimination; and step 7: resolving, to obtain the force at the current time by using a corresponding fitting function based on the stroke direction discrimination result.
    Type: Grant
    Filed: July 1, 2020
    Date of Patent: June 20, 2023
    Assignee: SOUTHEAST UNIVERSITY
    Inventors: Aiguo Song, Shuyan Yang, Baoguo Xu, Huijun Li, Hong Zeng, Lifeng Zhu
  • Patent number: 11650117
    Abstract: The present invention discloses a six-dimensional force sensor with high sensitivity and low inter-dimensional coupling, including a clockwise or counterclockwise swastika-shaped beam, vertical beams, a rectangular outer frame, and strain gauges; the clockwise or counterclockwise swastika-shaped beam includes a cross-shaped transverse beam and four rectangular transverse beams; a center of the cross-shaped transverse beam is provided with several force application holes used for applying forces and moments; four tail ends of the cross-shaped transverse beam are each connected to one of the rectangular transverse beams to form a clockwise or counterclockwise swastika-shaped structure; a top end of a vertical beam is connected to a tail end of a corresponding rectangular transverse beam, and bottom ends of the vertical beams are connected to the rectangular outer frame; and there are a plurality of strain gauges to form six groups of Wheatstone bridges that are respectively used for measuring an X-direction for
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: May 16, 2023
    Assignee: SOUTHEAST UNIVERSITY
    Inventors: Aiguo Song, Shuyan Yang, Baoguo Xu, Ming Wei, Chunhui Wang, Fan Li, Yuhua Yao, Yanjun Li, Suinan Zhang, Qiong Jin
  • Publication number: 20230139608
    Abstract: A rehabilitation glove based on a bidirectional driver of a honeycomb imitating structure, including five bidirectional drivers and a cotton glove. The drivers are fixed to a back of the glove through hook and loop fasteners. Each driver includes a hollow buckling air bag in a continuous bent state, a middle guide layer in a continuous bent state and a hollow stretching air bag. The buckling air bag and the middle guide layer are symmetrically arranged, and the stretching air bag in a straightened state is arranged below the middle guide layer. A novel bidirectional driver of a honeycomb imitating structure is provided, which may provide a patient with rehabilitation training in two degrees of freedom: buckling and stretching. A control algorithm of the bidirectional driver is further provided to perform force control output for the driver, which may better help the patient recover hand functions.
    Type: Application
    Filed: January 6, 2022
    Publication date: May 4, 2023
    Inventors: Aiguo SONG, Jianwei LAI, Huijun LI, Hong ZENG, Baoguo XU, Ting WU
  • Patent number: 11607815
    Abstract: The present invention provides a two-degree-of-freedom rope-driven finger force feedback device. The two-degree-of-freedom rope-driven finger force feedback device includes a hand support mechanism, a thumb movement mechanism, an index finger movement mechanism, and a handle mechanism. The hand support mechanism includes a motor, a motor shaft sleeve, a sliding rail, and an inertial measurement unit (IMU) sensor. The thumb movement mechanism includes a long rotary disc, a torque sensor, an angle sensor, a thumb sleeve, a pressure sensor, two links, a thumb brace, and a thumb fixing ring. The handle mechanism includes a cylindrical handle, a pressure sensor, a flexible fixing band, and a slider. Torque is driven between the rotary disc and the motor by using a rope. The handle mechanism is movable forward and backward and is capable of automatic restoration.
    Type: Grant
    Filed: January 29, 2021
    Date of Patent: March 21, 2023
    Assignee: SOUTHEAST UNIVERSITY
    Inventors: Aiguo Song, Bincheng Shao, Huijun Li, Hong Zeng, Baoguo Xu
  • Publication number: 20220373122
    Abstract: The present invention discloses a pipeline patrol inspection robot having variable tracks and a control method therefor. The pipeline patrol inspection robot of the present invention includes a robot body, track assemblies symmetrically disposed on a left side and a right side of the robot body, and a movement driving mechanism. The robot body is connected to the track assemblies on the left side and the right side by track fixtures, and track angle adjusting mechanisms are respectively connected between the robot body and the track assemblies on the left side and the right side. By means of the present invention, a track camber angle can be adjusted. In addition, each track angle adjusting mechanism is independent, and has desirable flexibility to adapt to different pipeline environments.
    Type: Application
    Filed: January 4, 2021
    Publication date: November 24, 2022
    Inventors: Aiguo SONG, Tianyuan MIAO, Bincheng SHAO, Baoguo XU, Guangming SONG, Bo XU, Shuang LIU, Jihai MIN
  • Publication number: 20220354411
    Abstract: Disclosed is a natural movement electroencephalogram (EEG) recognition method based on source localization and a brain network, which includes the following steps: (1) performing multi-channel EEG measurement for natural movements; (2) preprocessing acquired EEG signals, and extracting the movement-related cortical potential (MRCP), and ?, ?, ?, and ? rhythms; (3) determining a lead field matrix of the signals, calculating initial solutions of sources by means of L1 regularization constraint, and then performing iteration by means of successive over-relaxation to obtain a source localization result; (4) by using the sources as nodes, calculating PLV between each pair of sources at each time point by means of short-time sliding window, and establishing brain networks; and (5) calculating a network adjacency matrix at each time point and five brain network indicators, introducing these features into a classifier for training and testing, and conducting a statistical test for the brain network indicators.
    Type: Application
    Filed: November 30, 2020
    Publication date: November 10, 2022
    Inventors: Baoguo XU, Leying DENG, Yifei WANG, Xin WANG, Aiguo SONG
  • Publication number: 20220355469
    Abstract: Provided are a multi-degree-of-freedom myoelectric artificial hand control system and a method for using same. The system comprises a robotic hand, a robotic wrist (2), a stump receiving cavity (1) and a data processor (3), wherein the robotic hand and the stump receiving cavity (1) are respectively mounted on two ends of the robotic wrist (2); a multi-channel myoelectric array electrode oversleeve, a control unit circuit board, and a battery are connected in the stump receiving cavity (1); and the other end of the control unit circuit board is connected to the robotic hand and the robotic wrist (2).
    Type: Application
    Filed: June 3, 2020
    Publication date: November 10, 2022
    Inventors: Aiguo SONG, Xuhui HU, Zhikai WEI, Huijun LI, Baoguo XU, Hong ZENG
  • Patent number: 11491071
    Abstract: A virtual scene interactive rehabilitation training robot based on a lower limb connecting rod model and force sense information and a control method thereof are disclosed. The thigh, calf and foot of a leg of a human body are equated to a three-connecting rod series-connected mechanical arm. A human body leg gravity compensation model is constructed. The leg posture of a patient is detected by Kinect. An interaction force between a limb of the patient and a rehabilitation robot is detected by a force sensor on the rehabilitation robot. Then, a progressive rehabilitation training method is designed for the model. According to a set weight reduction ratio, the motion of the rehabilitation robot is controlled by judging plantar force data.
    Type: Grant
    Filed: June 20, 2020
    Date of Patent: November 8, 2022
    Assignee: SOUTHEAST UNIVERSITY
    Inventors: Aiguo Song, Ke Shi, Hong Zeng, Huijun Li, Baoguo Xu, Xinyu Tang
  • Patent number: 11478937
    Abstract: The present invention discloses a care robot controller, which includes: a controller body that includes slide rails, finger slot sliders and a joystick, wherein the finger slot sliders are movably arranged on the slide rails and configured to receive pressing, and the joystick is configured to control the care robot; a gesture parsing unit configured to parse three-dimensional gestures of the controller body, and control the care robot to perform corresponding actions when the three-dimensional gestures of the controller body are in line with preset gestures; and a tactile sensing unit configured to sense the pressing received by the finger slot sliders and initiate a user mode corresponding to the pressing information, so that the controller body provides corresponding vibration feedback. Thus the user can control the controller efficiently and conveniently, the control accuracy is improved, and effective man-machine interaction is realized.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: October 25, 2022
    Assignee: SOUTHEAST UNIVERSITY
    Inventors: Aiguo Song, Chaolong Qin, Jiahang Zhu, Linhu Wei, Yu Zhao, Huijun Li, Baoguo Xu
  • Publication number: 20220314458
    Abstract: The present invention provides a two-degree-of-freedom rope-driven finger force feedback device. The two-degree-of-freedom rope-driven finger force feedback device includes a hand support mechanism, a thumb movement mechanism, an index finger movement mechanism, and a handle mechanism. The hand support mechanism includes a motor, a motor shaft sleeve, a sliding rail, and an inertial measurement unit (IMU) sensor. The thumb movement mechanism includes a long rotary disc, a torque sensor, an angle sensor, a thumb sleeve, a pressure sensor, two links, a thumb brace, and a thumb fixing ring. The handle mechanism includes a cylindrical handle, a pressure sensor, a flexible fixing band, and a slider. Torque is driven between the rotary disc and the motor by using a rope. The handle mechanism is movable forward and backward and is capable of automatic restoration.
    Type: Application
    Filed: January 29, 2021
    Publication date: October 6, 2022
    Inventors: Aiguo SONG, Bincheng SHAO, Huijun LI, Hong ZENG, Baoguo XU
  • Publication number: 20220307933
    Abstract: The present invention discloses a high-precision and miniaturized on-orbit calibration device for a six-dimensional force sensor of a space station manipulator and a calibration method thereof, which include an inverted ? shape fixing bracket, three force applying devices, and a cubic stress block. Each force applying device includes a force applying head, a single axis force sensor, a force source part and a fastening part. The force source part includes an upper support plate, a second electrode plate, piezoelectric ceramic plates, a first electrode plate and a lower support plate, which are coaxially arranged sequentially from top to bottom. The single axis force sensor is mounted on the top of the upper support plate, and the hemispherical force applying head is mounted on the top of the single axis force sensor. The cubic stress block is mounted on the top of the six-dimensional force sensor.
    Type: Application
    Filed: February 1, 2021
    Publication date: September 29, 2022
    Applicant: SOUTHEAST UNIVERSITY
    Inventors: Aiguo SONG, Shuyan YANG, Baoguo XU, Yonghui ZHOU, Qimeng TAN, Changchun LIANG, Ming WEI, Chunhui WANG, Fan LI, Suinan ZHANG
  • Patent number: 11454560
    Abstract: A whisker sensor includes an upper circuit board, a lower circuit board, a flexible whisker, and a magnet. The magnet is fixed to the flexible whisker through a central through hole, and the location of the magnet changes with the swinging of the whisker; the upper and lower circuit boards are identical in shape and size, and are connected through an upright column. A circular hole is formed at the center of the upper circuit board, four Hall sensors are symmetrically distributed on the edge of the circular hole, and the displacement of the whisker in X and Y directions can be obtained by detecting the change in magnetic field generated by the change in location of the magnet; a contact sensor is mounted on the lower circuit board, and is connected to the whisker through a connecting piece, to detect displacement of the whisker in the Z direction.
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: September 27, 2022
    Assignee: SOUTHEAST UNIVERSITY
    Inventors: Aiguo Song, Mingxin Leng, Baoguo Xu, Huijun Li