Patents by Inventor Baolin Peng

Baolin Peng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240362418
    Abstract: A technique supplements a language model with knowledge information retrieved from external sources. The technique operates by: receiving a query; receiving knowledge information based on the query; generating original model-input information that includes the query and the knowledge information; and presenting the original model-input information to the language model. The technique further includes: receiving an original response from the language model; generating a usefulness measure that identifies usefulness of the original response; and determining whether the usefulness measure satisfies a prescribed test. Upon determining that the usefulness measure does not satisfy the test, the technique includes: generating revised model-input information that includes feedback information; presenting the revised model-input information to the language model; and receiving a revised response from the language model.
    Type: Application
    Filed: April 28, 2023
    Publication date: October 31, 2024
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Baolin PENG, Michel GALLEY, Hao CHENG, Pengcheng HE, Nguyen Hung BACH, Weizhu CHEN, Jianfeng GAO
  • Patent number: 12032627
    Abstract: Systems and methods are provided for determining a response to a query in a dialog. An entity extractor extracts rules and conditions associated with the query and determines a particular task. The disclosed technology generates a transformer-based dialog embedding by pre-training a transformer using dialog corpora including a plurality of tasks. A task-specific classifier generates a first set of candidate responses based on rules and conditions associated with the task. The transformer-based dialog embedding generates a second set of candidate responses to the query. The classifier accommodates changes made to a task by an interactive dialog editor as machine teaching. A response generator generates a response based on the first and second sets of candidate responses using an optimization function.
    Type: Grant
    Filed: November 15, 2021
    Date of Patent: July 9, 2024
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Jinchao Li, Lars H. Liden, Baolin Peng, Thomas Park, Swadheen Kumar Shukla, Jianfeng Gao
  • Publication number: 20240062020
    Abstract: Systems and methods are provided for training and using a novel unified language foundation model. An encoder-decoder natural language model is obtained and various training data is obtained and used for training. The training process integrates a combination of replaced token detection, corrupted span reconstruction, and disentangled attention methodologies to produce a unified encoder-decoder model. The trained model is trained for performing both natural language understanding (NLU) tasks and natural language generation (NLG) tasks. Attention applied to the model is applied discretely to segmented chunks of encoded data during processing to improve the efficiency of applying attention by the model.
    Type: Application
    Filed: October 20, 2022
    Publication date: February 22, 2024
    Inventors: Pengcheng HE, Jianfeng GAO, Nanshan ZENG, Xuedong HUANG, Wei XIONG, Baolin PENG
  • Publication number: 20240062018
    Abstract: Systems and methods are provided for training and using a novel unified language foundation model. An encoder-decoder natural language model is obtained and various training data is obtained and used for training. The training process integrates a combination of replaced token detection, corrupted span reconstruction, and disentangled attention methodologies to produce a unified encoder-decoder model. The trained model is trained for performing both natural language understanding (NLU) tasks and natural language generation (NLG) tasks. Attention applied to the model is applied discretely to segmented chunks of encoded data during processing to improve the efficiency of applying attention by the model.
    Type: Application
    Filed: October 20, 2022
    Publication date: February 22, 2024
    Inventors: Pengcheng HE, Jianfeng GAO, Nanshan ZENG, Xuedong HUANG, Wei XIONG, Baolin PENG
  • Patent number: 11875787
    Abstract: This document relates to machine learning. One example includes a method or technique that can be performed on a computing device. The method or technique can include obtaining a task-semantically-conditioned generative model that has been pretrained based at least on a first training data set having unlabeled training examples and semantically conditioned based at least on a second training data set having dialog act-labeled utterances. The method or technique can also include inputting dialog acts into the semantically-conditioned generative model and obtaining synthetic utterances that are output by the semantically-conditioned generative model. The method or technique can also include outputting the synthetic utterances.
    Type: Grant
    Filed: October 11, 2022
    Date of Patent: January 16, 2024
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Baolin Peng, Chenguang Zhu, Chunyuan Li, Xiujun Li, Jinchao Li, Nanshan Zeng, Jianfeng Gao
  • Publication number: 20230153348
    Abstract: Systems and methods are provided for determining a response to a query in a dialog. An entity extractor extracts rules and conditions associated with the query and determines a particular task. The disclosed technology generates a transformer-based dialog embedding by pre-training a transformer using dialog corpora including a plurality of tasks. A task-specific classifier generates a first set of candidate responses based on rules and conditions associated with the task. The transformer-based dialog embedding generates a second set of candidate responses to the query. The classifier accommodates changes made to a task by an interactive dialog editor as machine teaching. A response generator generates a response based on the first and second sets of candidate responses using an optimization function.
    Type: Application
    Filed: November 15, 2021
    Publication date: May 18, 2023
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Jinchao LI, Lars H. LIDEN, Baolin PENG, Thomas PARK, Swadheen Kumar SHUKLA, Jianfeng GAO
  • Publication number: 20230076095
    Abstract: This document relates to machine learning. One example includes a method or technique that can be performed on a computing device. The method or technique can include obtaining a task-adapted generative model that has been tuned using one or more task-specific seed examples. The method or technique can also include inputting dialog acts into the task-adapted generative model and obtaining synthetic utterances that are output by the task-adapted generative model. The method or technique can also include populating a synthetic training corpus with synthetic training examples that include the synthetic utterances. The synthetic training corpus may be suitable for training a natural language understanding model.
    Type: Application
    Filed: October 11, 2022
    Publication date: March 9, 2023
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Baolin Peng, Chenguang Zhu, Chunyuan Li, Xiujun Li, Jinchao Li, Nanshan Zeng, Jianfeng Gao
  • Patent number: 11508360
    Abstract: This document relates to machine learning. One example includes a method or technique that can be performed on a computing device. The method or technique can include obtaining a task-adapted generative model that has been tuned using one or more task-specific seed examples. The method or technique can also include inputting dialog acts into the task-adapted generative model and obtaining synthetic utterances that are output by the task-adapted generative model. The method or technique can also include populating a synthetic training corpus with synthetic training examples that include the synthetic utterances. The synthetic training corpus may be suitable for training a natural language understanding model.
    Type: Grant
    Filed: September 15, 2020
    Date of Patent: November 22, 2022
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Baolin Peng, Chenguang Zhu, Chunyuan Li, Xiujun Li, Jinchao Li, Nanshan Zeng, Jianfeng Gao
  • Publication number: 20220084510
    Abstract: This document relates to machine learning. One example includes a method or technique that can be performed on a computing device. The method or technique can include obtaining a task-adapted generative model that has been tuned using one or more task-specific seed examples. The method or technique can also include inputting dialog acts into the task-adapted generative model and obtaining synthetic utterances that are output by the task-adapted generative model. The method or technique can also include populating a synthetic training corpus with synthetic training examples that include the synthetic utterances. The synthetic training corpus may be suitable for training a natural language understanding model.
    Type: Application
    Filed: September 15, 2020
    Publication date: March 17, 2022
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Baolin Peng, Chenguang Zhu, Chunyuan Li, Xiujun Li, Jinchao Li, Nanshan Zeng, Jianfeng Gao