Patents by Inventor Baowei Xu

Baowei Xu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240109885
    Abstract: The present invention relates to a 2,3-dihydro-1H-pyrrolo[3,2-b]pyridine derivative, a preparation method therefor, and an application thereof, and in particular to an EGFR inhibitor having the structure of formula (I), a preparation method therefor, a pharmaceutical composition containing same, a use of same as an EGFR inhibitor, and a use of same in the treatment and/or prevention of cancers, tumors, or metastatic diseases at least partially related to EGFR exon 20 insertion or deletion mutations, especially a use in the treatment of hyperproliferative diseases and dysfunction in cell death induction. The definition of each substituent in formula (I) is the same as that in the description.
    Type: Application
    Filed: December 1, 2021
    Publication date: April 4, 2024
    Inventors: Baowei Zhao, Mingming Zhang, Hongping Yu, Zhui Chen, Yaochang Xu
  • Publication number: 20230366449
    Abstract: The present application relates to one-motor-duel-drive synchronous drive device. The drive device includes: a housing, wherein the housing is hollow, a telescopic mechanism is connected to the housing, the telescopic mechanism includes a screw rod, and one end of the screw rod extends into the housing; a transmission mechanism, wherein the transmission mechanism comprises a first transmission component rotatably connected to an inner wall of the housing, a second transmission component is fixedly connected to the screw rod, and the first transmission component and the second transmission component are staggered gears engaged with each other; a linkage lever provided between the housings, wherein two ends of the linkage lever are connected to the first transmission component, respectively; and a drive mechanism configured to act on the linkage lever to rotate the linkage lever.
    Type: Application
    Filed: July 27, 2023
    Publication date: November 16, 2023
    Inventors: Zuochao LV, Long LI, Chunqi CHEN, Baowei XU, Yiting YE, Bin SHEN
  • Patent number: 11522377
    Abstract: The present invention provides a cup holder. The cup holder includes a cup holder body having a receiving part and a charging assembly. The charging assembly includes a wireless charging module. The wireless charging module is mounted on the cup holder body and configured to charge a smart electronic device. The cup holder can charge the smart electronic devices, thereby improving user experience.
    Type: Grant
    Filed: May 9, 2020
    Date of Patent: December 6, 2022
    Assignee: DEWERTOKIN TECHNOLOGY GROUP CO., LTD
    Inventors: Zhenjie Zhu, Baowei Xu, Long Li
  • Patent number: 11311255
    Abstract: Medical detectors and medical imaging devices are provided. In one aspect, a medical detector includes: a photoelectric conversion device, a first crystal array layer disposed over the photoelectric conversion device, and a second crystal array layer disposed over the first crystal layer. The first crystal array layer includes a plurality of first scintillation crystals arranged in a first crystal array, and a first coupling medium being filled between every adjacent two of the first scintillation crystals. The second crystal array layer includes a plurality of second scintillation crystals arranged in a second crystal array, and a second coupling medium being filled between every adjacent two of the second scintillation crystals. A light transmittance of the second coupling medium is different from a light transmittance of the first coupling medium.
    Type: Grant
    Filed: July 17, 2020
    Date of Patent: April 26, 2022
    Assignee: Shanghai Neusoft Medical Technology Co., Ltd.
    Inventors: Xi Wang, Xinying Li, Jian Zhao, Baowei Xu, Guodong Liang
  • Patent number: 11150364
    Abstract: A crystal array, a detector, a medical detection device and a method for manufacturing a crystal array are provided. The crystal array includes a plurality of crystals arranged in an array, each of the crystals having a light incident surface, a light exit surface, and a connection surface connecting the light incident surface to the light exit surface, where the connection surface of at least one of two adjacent crystals includes a rough surface and a smooth surface connected to the rough surface, and the rough surface and the smooth surface are arranged along a length direction of the crystal.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: October 19, 2021
    Assignee: Shanghai Neusoft Medical Technology Co., Ltd.
    Inventors: Xinying Li, Xi Wang, Jian Zhao, Baowei Xu, Guodong Liang
  • Publication number: 20210028635
    Abstract: The present invention provides a cup holder. The cup holder includes a cup holder body having a receiving part and a charging assembly. The charging assembly includes a wireless charging module. The wireless charging module is mounted on the cup holder body and configured to charge a smart electronic device. The cup holder can charge the smart electronic devices, thereby improving user experience.
    Type: Application
    Filed: May 9, 2020
    Publication date: January 28, 2021
    Inventors: ZHENJIE ZHU, BAOWEI XU, LONG LI
  • Publication number: 20210015436
    Abstract: Medical detectors and medical imaging devices are provided. In one aspect, a medical detector includes: a photoelectric conversion device, a first crystal array layer disposed over the photoelectric conversion device, and a second crystal array layer disposed over the first crystal layer. The first crystal array layer includes a plurality of first scintillation crystals arranged in a first crystal array, and a first coupling medium being filled between every adjacent two of the first scintillation crystals. The second crystal array layer includes a plurality of second scintillation crystals arranged in a second crystal array, and a second coupling medium being filled between every adjacent two of the second scintillation crystals. A light transmittance of the second coupling medium is different from a light transmittance of the first coupling medium.
    Type: Application
    Filed: July 17, 2020
    Publication date: January 21, 2021
    Inventors: Xi WANG, Xinying LI, Jian ZHAO, Baowei XU, Guodong LIANG
  • Publication number: 20200341158
    Abstract: A crystal array, a detector, a medical detection device and a method for manufacturing a crystal array are provided. The crystal array includes a plurality of crystals arranged in an array, each of the crystals having a light incident surface, a light exit surface, and a connection surface connecting the light incident surface to the light exit surface, where the connection surface of at least one of two adjacent crystals includes a rough surface and a smooth surface connected to the rough surface, and the rough surface and the smooth surface are arranged along a length direction of the crystal.
    Type: Application
    Filed: April 27, 2020
    Publication date: October 29, 2020
    Applicant: Shanghai Neusoft Medical Technology Co., Ltd.
    Inventors: Xinying LI, Xi WANG, Jian ZHAO, Baowei XU, Guodong LIANG
  • Patent number: 10755452
    Abstract: A method of calibrating time in a Positron Emission Tomography (PET) device includes obtaining original time information and energy information of a first pulse signal collected by a detecting module during a scanning process of the PET device. A detector of the PET device includes a plurality of detecting modules. The original time information of the first pulse signal includes a moment at which an amplitude of the first pulse signal begins to be greater than a threshold. The method includes determining a pulse time calibration amount corresponding to the energy information of the first pulse signal according to stored information indicative of a correspondence between the pulse time calibration amount and the energy information of each detecting module. The method includes generating calibrated time information of the first pulse signal by calibrating the original time information with the pulse time calibration amount; and reconstructing a PET image based on the generated calibrated time information.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: August 25, 2020
    Assignee: Shanghai Neusoft Medical Technology Co., Ltd.
    Inventors: Xi Wang, Jian Zhao, Guocheng Wu, Baowei Xu, Guodong Liang
  • Publication number: 20190012812
    Abstract: A method of calibrating time in a Positron Emission Tomography (PET) device includes obtaining original time information and energy information of a first pulse signal collected by a detecting module during a scanning process of the PET device. A detector of the PET device includes a plurality of detecting modules. The original time information of the first pulse signal includes a moment at which an amplitude of the first pulse signal begins to be greater than a threshold. The method includes determining a pulse time calibration amount corresponding to the energy information of the first pulse signal according to stored information indicative of a correspondence between the pulse time calibration amount and the energy information of each detecting module. The method includes generating calibrated time information of the first pulse signal by calibrating the original time information with the pulse time calibration amount; and reconstructing a PET image based on the generated calibrated time information.
    Type: Application
    Filed: June 26, 2018
    Publication date: January 10, 2019
    Inventors: Xi WANG, Jian ZHAO, Guocheng WU, Baowei XU, Guodong LIANG
  • Publication number: 20180372890
    Abstract: A method of calibrating time in a Positron Emission Computed Tomography (PET) device includes determining a rising edge slope of an electrical signal corresponding to a photon which is detected by a detector of the PET device when the PET device is used to scan a part of a subject to be examined. The method includes determining a time shift corresponding to the rising edge slope based on a correspondence between the rising edge slope and the time shift; calibrating time information of the photon based on the time shift; and reconstructing a PET image of the part of the subject to be examined based on the calibrated time information of the photon.
    Type: Application
    Filed: June 26, 2018
    Publication date: December 27, 2018
    Inventors: Jian ZHAO, Guocheng WU, Xi WANG, Baowei XU, Guodong LIANG, Nan LI
  • Patent number: 10162068
    Abstract: A method of calibrating time in a Positron Emission Computed Tomography (PET) device includes determining a rising edge slope of an electrical signal corresponding to a photon which is detected by a detector of the PET device when the PET device is used to scan a part of a subject to be examined. The method includes determining a time shift corresponding to the rising edge slope based on a correspondence between the rising edge slope and the time shift; calibrating time information of the photon based on the time shift; and reconstructing a PET image of the part of the subject to be examined based on the calibrated time information of the photon.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: December 25, 2018
    Assignee: Shenyang Neusoft Medical Systems Co., Ltd.
    Inventors: Jian Zhao, Guocheng Wu, Xi Wang, Baowei Xu, Guodong Liang, Nan Li
  • Patent number: 10126444
    Abstract: Methods and devices for calibrating a gain of a scintillator detector are disclosed, where a scintillation crystal of the scintillator detector includes two or more energy regions. In an example, the scintillation crystal of the scintillator detector is adopted as a radiation source for calibrating. Electric signals outputted from a rear end of the scintillator detector are collected, and actual counts of the electric signals from each of at least two energy regions of the scintillation crystal at a specified position are obtained, respectively. Then, a gain of the scintillator detector may be adjusted according to the obtained actual counts of the electric signals from the at least two energy regions.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: November 13, 2018
    Assignee: Shenyang Neusoft Medical Systems Co., Ltd.
    Inventors: Jian Zhao, Nan Li, Guocheng Wu, Baowei Xu, Changqing Fu, Guodong Liang, Donghui Han
  • Patent number: 10006808
    Abstract: A method of adjusting a gain of a detector is provided in the present disclosure. According to an example, whether a gain of a photomultiplier tube in the detector meets a gain determination condition may be determined, where the gain determination condition may indicate that an absolute of a difference between the gain of the photomultiplier tube and a target gain is within a predetermined numerical range. When the gain of the photomultiplier tube does not meet the gain determination condition, a voltage of the photomultiplier tube may be adjusted, such that the gain of the photomultiplier tube meets the gain determination condition.
    Type: Grant
    Filed: October 25, 2016
    Date of Patent: June 26, 2018
    Assignee: Shenyang Neusoft Medical Systems Co., Ltd.
    Inventors: Jian Zhao, Nan Li, Guocheng Wu, Baowei Xu, Changqing Fu, Guodong Liang
  • Publication number: 20170167915
    Abstract: A method of adjusting a gain of a detector is provided in the present disclosure. According to an example, whether a gain of a photomultiplier tube in the detector meets a gain determination condition may be determined, where the gain determination condition may indicate that an absolute of a difference between the gain of the photomultiplier tube and a target gain is within a predetermined numerical range. When the gain of the photomultiplier tube does not meet the gain determination condition, a voltage of the photomultiplier tube may be adjusted, such that the gain of the photomultiplier tube meets the gain determination condition.
    Type: Application
    Filed: October 25, 2016
    Publication date: June 15, 2017
    Inventors: Jian Zhao, Nan Li, Guocheng Wu, Baowei Xu, Changqing Fu, Guodong Liang
  • Publication number: 20170090051
    Abstract: Methods and devices for calibrating a gain of a scintillator detector are disclosed, where a scintillation crystal of the scintillator detector includes two or more energy regions. In an example, the scintillation crystal of the scintillator detector is adopted as a radiation source for calibrating. Electric signals outputted from a rear end of the scintillator detector are collected, and actual counts of the electric signals from each of at least two energy regions of the scintillation crystal at a specified position are obtained, respectively. Then, a gain of the scintillator detector may be adjusted according to the obtained actual counts of the electric signals from the at least two energy regions.
    Type: Application
    Filed: September 12, 2016
    Publication date: March 30, 2017
    Inventors: Jian ZHAO, Nan LI, Guocheng WU, Baowei XU, Changqing FU, Guodong LIANG, Donghui HAN
  • Patent number: 7941203
    Abstract: A multimodality imaging system, comprising: a first imaging system for forming a first image; a second imaging system for forming a second image; and a rotating device on which the first imaging system and the second imaging system are fixed so that the first imaging system and the second imaging system are selectively rotated to a scanning position.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: May 10, 2011
    Assignee: Neusolft Positron Medical Systems Co., Ltd.
    Inventors: Quanlu Zheng, Tie Gao, Jiadi Li, Kai Liu, Qingze Yu, Baowei Xu, Haitao Mu, Qizhi Zhang, Xinghua Zhao
  • Publication number: 20080081985
    Abstract: A multimodality imaging system, comprising: a first imaging system for forming a first image; a second imaging system for forming a second image; and a rotating device on which the first imaging system and the second imaging system are fixed so that the first imaging system and the second imaging system are selectively rotated to a scanning position.
    Type: Application
    Filed: September 21, 2007
    Publication date: April 3, 2008
    Applicant: Neusoft Positron Medical Systems
    Inventors: Quanlu Zheng, Tie Gao, Jiadi Li, Kai Liu, Qingze Yu, Baowei Xu, Haitao Mu, Qizhi Zhang, Xinghua Zhao