Patents by Inventor Barbara A. Capron

Barbara A. Capron has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10107680
    Abstract: A quantum signal detection system includes a signal source configured to emit a transmit signal towards a target, and a photon adder that is configured to add at least one photon to a return signal that reflects from the target to form a combined signal. The combined signal increases a signal to noise ratio of the return signal.
    Type: Grant
    Filed: January 13, 2016
    Date of Patent: October 23, 2018
    Assignee: The Boeing Company
    Inventors: Barbara A. Capron, Benjamin E. C. Koltenbah, Claudio Parazzoli
  • Publication number: 20170199077
    Abstract: A quantum signal detection system includes a signal source configured to emit a transmit signal towards a target, and a photon adder that is configured to add at least one photon to a return signal that reflects from the target to form a combined signal. The combined signal increases a signal to noise ratio of the return signal.
    Type: Application
    Filed: January 13, 2016
    Publication date: July 13, 2017
    Applicant: The Boeing Company
    Inventors: Barbara A. Capron, Benjamin E.G. Koltenbah, Claudio Parazzoli
  • Patent number: 9692523
    Abstract: Methods of digital communication utilizing entangled qubits are disclosed. The communication methods exploit selective entanglement swapping to transfer an entangled state between a sending device and a receiving device. Each device includes pairs of qubits that are independently entangled with pairs of qubits in the other device. By selectively entangling the qubits within a pair in the sending device, the qubits of the corresponding pair in the receiving device also are selectively entangled. When the qubits are entangled, they are projected onto a particular entangled state type. Though no information may be transferred through selective entanglement of one qubit pair, the disclosed methods determine whether a set of pairs of qubits are entangled by determining whether the distribution of pairs is a correlated or uncorrelated distribution (a probabilistic approach) and transform the distribution type to a classical bit of data to transfer classical bits in a qubit-efficient approach.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: June 27, 2017
    Assignee: The Boeing Company
    Inventors: Shawn Michael Smith, Claudio G. Parazzoli, Barbara A. Capron, Shahriar Khosravani, Michael C. Freebery
  • Publication number: 20170134100
    Abstract: Methods of digital communication utilizing entangled qubits are disclosed. The communication methods exploit selective entanglement swapping to transfer an entangled state between a sending device and a receiving device. Each device includes pairs of qubits that are independently entangled with pairs of qubits in the other device. By selectively entangling the qubits within a pair in the sending device, the qubits of the corresponding pair in the receiving device also are selectively entangled. When the qubits are entangled, they are projected onto a particular entangled state type. Though no information may be transferred through selective entanglement of one qubit pair, the disclosed methods determine whether a set of pairs of qubits are entangled by determining whether the distribution of pairs is a correlated or uncorrelated distribution (a probabilistic approach) and transform the distribution type to a classical bit of data to transfer classical bits in a qubit-efficient approach.
    Type: Application
    Filed: January 23, 2017
    Publication date: May 11, 2017
    Inventors: Shawn Michael Smith, Claudio G. Parazzoli, Barbara A. Capron, Shahriar Khosravani, Michael C. Freebery
  • Patent number: 9612161
    Abstract: The present disclosure generally relates to techniques for measuring a phase difference between a first set of photons and a second set of photons. The techniques can include directing the first set of photons to a first parametric downconverter, directing the second set of photons to a second parametric downconverter, directing photons output from an exotic photon source to the first downconverter and directing photons output from the first parametric downconverter to a first beam splitter, directing photons output from an exotic photon source to the first beam splitter, directing photons output from the second parametric downconverter to a second beam splitter, directing photons output from the first beam splitter to the second beam splitter, detecting photons output from the second beam splitter, deriving, from the detecting, a phase difference between the first set of photons and the second set of photons, and outputting the phase difference.
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: April 4, 2017
    Assignee: THE BOEING COMPANY
    Inventors: Barbara A. Capron, Benjamin E. C. Koltenbah, Claudio G. Parazzoli
  • Patent number: 9571207
    Abstract: Digital communication systems utilizing entangled qubits are disclosed. The disclosed systems and component sending devices and receiving devices exploit selective entanglement swapping to transfer an entangled state between the sending device and the receiving device. Each device includes pairs of qubits that are independently entangled with pairs of qubits in the other device. By selectively entangling the qubits within a pair in the sending device, the qubits of the corresponding pair in the receiving device also are selectively entangled. When the qubits are entangled, they are projected onto a particular entangled state type. Though no information may be transferred through selective entanglement of one qubit pair, systems of the present disclosure determine whether a set of pairs of qubits are entangled by determining whether the distribution of pairs is a correlated or uncorrelated distribution (a probabilistic approach) and transform the distribution type to a classical bit of data.
    Type: Grant
    Filed: July 6, 2016
    Date of Patent: February 14, 2017
    Assignee: The Boeing Company
    Inventors: Shawn Michael Smith, Claudio G. Parazzoli, Barbara A. Capron, Shahriar Khosravani, Michael C. Freebery
  • Publication number: 20160315715
    Abstract: Digital communication systems utilizing entangled qubits are disclosed. The disclosed systems and component sending devices and receiving devices exploit selective entanglement swapping to transfer an entangled state between the sending device and the receiving device. Each device includes pairs of qubits that are independently entangled with pairs of qubits in the other device. By selectively entangling the qubits within a pair in the sending device, the qubits of the corresponding pair in the receiving device also are selectively entangled. When the qubits are entangled, they are projected onto a particular entangled state type. Though no information may be transferred through selective entanglement of one qubit pair, systems of the present disclosure determine whether a set of pairs of qubits are entangled by determining whether the distribution of pairs is a correlated or uncorrelated distribution (a probabilistic approach) and transform the distribution type to a classical bit of data.
    Type: Application
    Filed: July 6, 2016
    Publication date: October 27, 2016
    Inventors: Shawn Michael Smith, Claudio G. Parazzoli, Barbara A. Capron, Shahriar Khosravani, Michael C. Freebery
  • Patent number: 9413470
    Abstract: Systems and methods for digital communication utilizing entangled qubits are disclosed. The disclosed systems and methods exploit selective entanglement swapping to transfer an entangled state between a sending device and a receiving device. Each device includes pairs of qubits that are independently entangled with pairs of qubits in the other device. By selectively entangling the qubits within a pair in the sending device, the qubits of the corresponding pair in the receiving device also are selectively entangled. When the qubits are entangled, they are projected onto a particular entangled state type. Though no information may be transferred through selective entanglement of one qubit pair, systems and methods of the present disclosure determine whether a set of pairs of qubits are entangled by determining whether the distribution of pairs is a correlated or uncorrelated distribution (a probabilistic approach) and transform the distribution type to a classical bit of data.
    Type: Grant
    Filed: March 9, 2015
    Date of Patent: August 9, 2016
    Assignee: The Boeing Company
    Inventors: Shawn Michael Smith, Claudio G. Parazzoli, Barbara A. Capron, Shahriar Khosravani, Michael C. Freebery
  • Publication number: 20160209274
    Abstract: The present disclosure generally relates to techniques for measuring a phase difference between a first set of photons and a second set of photons. The techniques can include directing the first set of photons to a first parametric downconverter, directing the second set of photons to a second parametric downconverter, directing photons output from an exotic photon source to the first downconverter and directing photons output from the first parametric downconverter to a first beam splitter, directing photons output from an exotic photon source to the first beam splitter, directing photons output from the second parametric downconverter to a second beam splitter, directing photons output from the first beam splitter to the second beam splitter, detecting photons output from the second beam splitter, deriving, from the detecting, a phase difference between the first set of photons and the second set of photons, and outputting the phase difference.
    Type: Application
    Filed: January 21, 2015
    Publication date: July 21, 2016
    Inventors: Barbara A. Capron, Benjamin E.C. Koltenbah, Claudio G. Parazzoli
  • Patent number: 9350461
    Abstract: Systems and methods for digital communication utilizing entangled qubits are disclosed. The disclosed systems and methods exploit selective entanglement swapping to transfer an entangled state between sites. Each site includes pairs of qubits that are independently entangled with pairs of qubits at the other site. By selectively entangling the qubits within a pair at one site, the qubits of the corresponding pair at the other site also are selectively entangled. When the qubits are entangled, they are projected onto a particular entangled state type. Though no information may be transferred through selective entanglement of one qubit pair, systems and methods of the present disclosure determine whether a set of pairs of qubits are entangled by determining whether the distribution of pairs is a correlated or uncorrelated distribution (a probabilistic approach) and transform the distribution type to a classical bit of data.
    Type: Grant
    Filed: March 9, 2015
    Date of Patent: May 24, 2016
    Assignee: The Boeing Company
    Inventors: Shawn Michael Smith, Claudio G. Parazzoli, Barbara A. Capron, Shahriar Khosravani, Michael C. Freebery
  • Patent number: 9303974
    Abstract: A method, apparatus, and system for improving the angular resolution of an image. A plurality of photon beams originating from a scene are received at a sensor system. Each of the plurality of photon beams is interfered with a corresponding source photon beam in a plurality of source photon beams to form a plurality of interference beams. Each of the plurality of source photon beams has a non-classical state. Fluctuations in a photon-number of the each of the plurality of source photon beams are reduced to within selected tolerances. An output signal is formed based on the plurality of interference beams. The output signal is configured for use in generating an image of the scene.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: April 5, 2016
    Assignee: THE BOEING COMPANY
    Inventors: Barbara A. Capron, Claudio G. Parazzoli
  • Patent number: 9267782
    Abstract: A system may include a synthetic optical aperture configured to receive a plurality of received photon beams comprising a scene including an object. The system may also include an active optical interference system configured to interfere each of the plurality of received photon beams from the synthetic optical aperture with a corresponding source photon beam of a plurality of source photon beams. The active optical interference system may generate a plurality of enhanced interference beams. Each enhanced interference beam includes at least a predetermined gain. The system may further include a detector system configured to detect the plurality of enhanced interference beams and generate an electrical output signal for use in generating a reconstructed image of the object with improved resolution responsive to at least the predetermined gain of the enhanced interference beams.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: February 23, 2016
    Assignee: The Boeing Company
    Inventors: Barbara A. Capron, Claudio G. Parazzoli
  • Patent number: 9244270
    Abstract: A wide angle scanning system includes a plurality of rotationally symmetrical transmissive optical elements each having a non-refracting surface and a refracting surface; and a mechanical beam steering system including micro-mechanical steering elements, each being coupled to a respective one of the plurality of rotationally symmetrical transmissive optical elements for rotating a respective rotationally symmetrical transmissive optical element about a center of rotation that coincides with a center of the non-refracting surface.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: January 26, 2016
    Assignee: The Boeing Company
    Inventors: William D. Sherman, Jonathan M. Saint Clair, Barbara A. Capron, Stephen K. Wilcken
  • Patent number: 9134422
    Abstract: An ultraviolet laser generates a coherent beam, which is downconverted to produce pairs of frequency-entangled photons. For each entangled pair, a first photon is sent along a first path and a second photon is sent along a second path. A first detector detects those photons sent along the first path, and a second detector detects those photons sent along the second path. The detection is performed in a single photon regime. Coincidence counting is performed on outputs of the detectors, including comparing leading edges on outputs of the first and second detectors within a time window.
    Type: Grant
    Filed: April 4, 2009
    Date of Patent: September 15, 2015
    Assignee: The Boeing Company
    Inventors: Jeffrey H. Hunt, Barbara A. Capron, Claudio G. Parazzoli
  • Patent number: 8655178
    Abstract: A method and apparatus for clearing an optical channel for transmitting data through free space between a first and second location includes a light beam, wherein the light beam has a spatially and/or time-dependent modulated intensity profile, and is substantially collimated so that the intensity profile is conserved over a specified distance of operation. The light beam includes a cross-sectional profile having regions of low and high intensity, portions of which are provided for the transmission of an optical data signal. A light source wavelength and intensity are selected for types of obscurant particles having optical properties whereby the radiation pressure acts on the particles, and the particles may then be either attracted into or repelled from portions of the spatially modulated optical beam, leaving certain portions of the optical channel beam absent of obscurant particles, thereby enabling transmission of optical data through the cleared optical channel with low attenuation.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: February 18, 2014
    Assignee: The Boeing Company
    Inventors: Barbara A. Capron, William A. McNeely, Kishan Dholakia, Antonia Erika Carruthers
  • Patent number: 8269978
    Abstract: An object that might be at least partially obscured is imaged. Frequency-entangled photons are generated. The frequency-entangled photons include photons having first and second frequencies. Those photons having the first frequency can pass through the obscuration and illuminate the object. Photons scattered by the object and those photons having the second frequency are used to form an image by considering coincidences in time of arrival.
    Type: Grant
    Filed: November 12, 2007
    Date of Patent: September 18, 2012
    Assignee: The Boeing Company
    Inventors: Barbara A. Capron, Claudio G. Parazzoli
  • Publication number: 20120134682
    Abstract: A method and apparatus for clearing an optical channel for transmitting data through free space between a first and second location includes a light beam, wherein the light beam has a spatially and/or time-dependent modulated intensity profile, and is substantially collimated so that the intensity profile is conserved over a specified distance of operation. The light beam includes a cross-sectional profile having regions of low and high intensity, portions of which are provided for the transmission of an optical data signal. A light source wavelength and intensity are selected for types of obscurant particles having optical properties whereby the radiation pressure acts on the particles, and the particles may then be either attracted into or repelled from portions of the spatially modulated optical beam, leaving certain portions of the optical channel beam absent of obscurant particles, thereby enabling transmission of optical data through the cleared optical channel with low attenuation.
    Type: Application
    Filed: February 7, 2012
    Publication date: May 31, 2012
    Applicant: The Boeing Company
    Inventors: Barbara A. Capron, William A. McNeely, Kishan Dholakia, Antonia Erika Carruthers
  • Patent number: 8184043
    Abstract: A system, apparatus, and method are disclosed for a super-resolution imaging radar (SRIR). The SRIR employs a pulse signal generator that propagates bursts of radio frequency (RF) energy. Each burst contains a number of pulses. One pulse of each burst is an ancilla pulse, and the remaining pulses are propagated towards an object. An array bucket detector (ABD) collects pulses that are reflected from the object. Also, the ancilla pulses are propagated through a virtual lens. A virtual scanning detector detects the virtual ancilla electric field. A processor calculates a virtual ancilla electric field, which would be present at the scanning detector. Further, a coincidence circuit calculates a cross-time correlation function of the electric fields of the reflected pulses that are collected by the ABD and the virtual ancilla electric field. The coincidence circuit uses cross-time correlation function results to generate pixels of an image of the object.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: May 22, 2012
    Assignee: The Boeing Company
    Inventors: Barbara A. Capron, Claudio Gilbert Parazzoli, Minas H. Tanielian
  • Patent number: 8184044
    Abstract: A system, method, and apparatus for a super resolution radar image extraction procedure are disclosed. The super-resolution imaging radar (SRIR) system involves a pulse signal generator, an array bucket detector, an ancilla beam detector, and a coincidence circuit. The pulse signal generator propagates N number of bursts of radio frequency (RF) energy, where each burst contains M number of dithered pulses. The pulses are propagated towards an object of interest and the ancilla beam detector. The array bucket detector collects pulses that are reflected from the object. The ancilla beam detector scans in a direction of the dithered pulses, and collects the dithered pulses. The coincidence circuit calculates a cross-time correlation function from the pulses that are collected by the array bucket detector and the ancilla beam detector. The coincidence circuit sums cross-time correlation function results to generate pixels of an image of the object.
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: May 22, 2012
    Assignee: The Boeing Company
    Inventors: Barbara A. Capron, Claudio Gilbert Parazzoli
  • Patent number: 8139944
    Abstract: A method and apparatus for clearing an optical channel for transmitting data through free space between a first and second location includes a light beam, wherein the light beam has a spatially and/or time-dependent modulated intensity profile, and is substantially collimated so that the intensity profile is conserved over a specified distance of operation. The light beam includes a cross-sectional profile having regions of low and high intensity, portions of which are provided for the transmission of an optical data signal. A light source wavelength and intensity are selected for types of obscurant particles having optical properties whereby the radiation pressure acts on the particles, and the particles may then be either attracted into or repelled from portions of the spatially modulated optical beam, leaving certain portions of the optical channel beam absent of obscurant particles, thereby enabling transmission of optical data through the cleared optical channel with low attenuation.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: March 20, 2012
    Assignee: The Boeing Company
    Inventors: Barbara A Capron, William A McNeely, Kishan Dholakia, Antonia Erika Carruthers