Patents by Inventor Barbara A. Waterhouse

Barbara A. Waterhouse has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7754574
    Abstract: An RF structure that includes an optimum padset for wire bonding and a high performance inductor that contains relatively thick metal inductor wires, both of which are located atop the final interconnect level of an interconnect structure. Specifically, the RF structure includes a dielectric layer having metal inductor wires of a first thickness and a metal bond pad having a major area of a second thickness located on a surface thereof, wherein the first thickness is greater than the second thickness. In the inventive RF structure, the majority of the metal bond pad is thinned for wire bonding, while maintaining the full metal wire thickness in the other areas of the structure for inductor performance requirements, such as, for example, low resistivity. Methods for fabricating the aforementioned RF structure are also provided.
    Type: Grant
    Filed: October 20, 2006
    Date of Patent: July 13, 2010
    Assignee: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, Zhong-Xiang He, Wolfgang Sauter, Barbara A. Waterhouse
  • Patent number: 7511940
    Abstract: Disclosed is a method of fabricating a metal-insulator-metal (MIM) capacitor. In this method, a dielectric layer is formed above a lower conductor layer and an upper conductor layer is formed above the dielectric layer. The invention then forms an etch stop layer above the upper conductor layer and the dielectric layer, and forms a hardmask (silicon oxide hardmask, a silicon nitride hardmask, etc.) over the etch stop layer. Next, a photoresist is patterned above the hardmask, which allows the hardmask, the etch stop layer, the dielectric layer, and the lower conductor layer to be etched through the photoresist.
    Type: Grant
    Filed: August 15, 2007
    Date of Patent: March 31, 2009
    Assignee: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, Ebenezer E. Eshun, Natalie B. Feilchenfeld, Michael L. Gautsch, Zhong-Xiang He, Matthew D. Moon, Vidhya Ramachandran, Barbara Waterhouse
  • Publication number: 20080132026
    Abstract: An RF structure that includes an optimum padset for wire bonding and a high performance inductor that contains relatively thick metal inductor wires, both of which are located atop the final interconnect level of an interconnect structure. Specifically, the RF structure includes a dielectric layer having metal inductor wires of a first thickness and a metal bond pad having a major area of a second thickness located on a surface thereof, wherein the first thickness is greater than the second thickness. In the inventive RF structure, the majority of the metal bond pad is thinned for wire bonding, while maintaining the fill metal wire thickness in the other areas of the structure for inductor performance requirements, such as, for example, low resistivity. Methods for fabricating the aforementioned RF structure are also provided.
    Type: Application
    Filed: October 20, 2006
    Publication date: June 5, 2008
    Applicant: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, Zhong-Xiang He, Wolfgang Sauter, Barbara A. Waterhouse
  • Patent number: 7326987
    Abstract: The present invention relates to metal-insulator-metal (MIM) capacitors and field effect transistors (FETs) formed on a semiconductor substrate. The FETs are formed in Front End of Line (FEOL) levels below the MIM capacitors which are formed in upper Back End of Line (BEOL) levels. An insulator layer is selectively formed to encapsulate at least a top plate of the MIM capacitor to protect the MIM capacitor from damage due to process steps such as, for example, reactive ion etching. By selective formation of the insulator layer on the MIM capacitor, openings in the inter-level dielectric layers are provided so that hydrogen and/or deuterium diffusion to the FETs can occur.
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: February 5, 2008
    Assignee: International Business Machines Corporation
    Inventors: Wagdi Abadeer, Eric Adler, Zhong-Xiang He, Bradley Orner, Vidhya Ramachandran, Barbara A. Waterhouse, Michael Zierak
  • Publication number: 20080019077
    Abstract: Disclosed is a method of fabricating a metal-insulator-metal (MIM) capacitor. In this method, a dielectric layer is formed above a lower conductor layer and an upper conductor layer is formed above the dielectric layer. The invention then forms an etch stop layer above the upper conductor layer and the dielectric layer, and forms a hardmask (silicon oxide hardmask, a silicon nitride hardmask, etc.) over the etch stop layer. Next, a photoresist is patterned above the hardmask, which allows the hardmask, the etch stop layer, the dielectric layer, and the lower conductor layer to be etched through the photoresist.
    Type: Application
    Filed: August 15, 2007
    Publication date: January 24, 2008
    Inventors: Douglas Coolbaugh, Ebenezer Eshun, Natalie Feilchenfeld, Michael Gautsch, Zhong-Xiang He, Matthew Moon, Vidhya Rahmachandran, Barbara Waterhouse
  • Patent number: 7301752
    Abstract: Disclosed is a method of fabricating a metal-insulator-metal (MIM) capacitor. In this method, a dielectric layer is formed above a lower conductor layer and an upper conductor layer is formed above the dielectric layer. The invention then forms an etch stop layer above the upper conductor layer and the dielectric layer, and forms a hardmask (silicon oxide hardmask, a silicon nitride hardmask, etc.) over the etch stop layer. Next, a photoresist is patterned above the hardmask, which allows the hardmask, the etch stop layer, the dielectric layer, and the lower conductor layer to be etched through the photoresist.
    Type: Grant
    Filed: June 4, 2004
    Date of Patent: November 27, 2007
    Assignee: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, Ebenezer E. Eshun, Natalie B. Feilchenfeld, Michael L. Gautsch, Zhong-Xiang He, Matthew D. Moon, Vidhya Ramachandran, Barbara Waterhouse
  • Publication number: 20070120216
    Abstract: A structure and a method of forming the structure. The structure including: an integrated circuit chip having a set of wiring levels from a first wiring level to a last wiring level, each wiring level including one or more damascene, dual-damascene wires or damascene vias embedded in corresponding interlevel dielectric levels, a top surface of a last damascene or dual-damascene wire of the last wiring level substantially coplanar with a top surface of a corresponding last interlevel dielectric level; a capping layer in direct physical and electrical contact with a top surface of the last damascene or dual-damascene wire, the last damascene or dual-damascene wire comprising copper; a dielectric passivation layer formed on a top surface of the last interlevel dielectric level; and an aluminum pad in direct physical and electrical contact with the capping layer, a top surface of the aluminum pad not covered by the dielectric passivation layer.
    Type: Application
    Filed: November 30, 2005
    Publication date: May 31, 2007
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jeffrey Brigante, Zhong-Xiang He, Barbara Waterhouse, Eric White
  • Patent number: 7170181
    Abstract: An RF structure that includes an optimum padset for wire bonding and a high performance inductor that contains relatively thick metal inductor wires, both of which are located atop the final interconnect level of an interconnect structure. Specifically, the RF structure includes a dielectric layer having metal inductor wires of a first thickness and a metal bond pad having a major area of a second thickness located on a surface thereof, wherein the first thickness is greater than the second thickness. In the inventive RF structure, the majority of the metal bond pad is thinned for wire bonding, while maintaining the full metal wire thickness in the other areas of the structure for inductor performance requirements, such as, for example, low resistivity. Methods for fabricating the aforementioned RF structure are also provided.
    Type: Grant
    Filed: November 19, 2003
    Date of Patent: January 30, 2007
    Assignee: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, Zhong-Xiang He, Wolfgang Sauter, Barbara A. Waterhouse
  • Patent number: 7056820
    Abstract: A bond pad upon which a wirebond interconnection is formed, consisting of a first bond pad layer formed on a chip, and a second bond pad layer formed on the first bond pad layer, wherein the first bond pad layer is more resistant to removal than the second bond pad layer during probe testing, and the first bond pad layer increases resistance to interconnection failure during mechanical testing.
    Type: Grant
    Filed: November 20, 2003
    Date of Patent: June 6, 2006
    Assignee: International Business Machines Corporation
    Inventors: Stephen P. Cole, William J. Murphy, Barbara A. Waterhouse
  • Publication number: 20050272219
    Abstract: Disclosed is a method of fabricating a metal-insulator-metal (MIM) capacitor. In this method, a dielectric layer is formed above a lower conductor layer and an upper conductor layer is formed above the dielectric layer. The invention then forms an etch stop layer above the upper conductor layer and the dielectric layer, and forms a hardmask (silicon oxide hardmask, a silicon nitride hardmask, etc.) over the etch stop layer. Next, a photoresist is patterned above the hardmask, which allows the hardmask, the etch stop layer, the dielectric layer, and the lower conductor layer to be etched through the photoresist.
    Type: Application
    Filed: June 4, 2004
    Publication date: December 8, 2005
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Douglas Coolbaugh, Ebenezer Eshun, Natalie Feilchenfeld, Michael Gautsch, Zhong-Xiang He, Matthew Moon, Vidhya Ramachandran, Barbara Waterhouse
  • Publication number: 20050189615
    Abstract: The present invention relates to metal-insulator-metal (MIM) capacitors and field effect transistors (FETs) formed on a semiconductor substrate. The FETs are formed in Front End of Line (FEOL) levels below the MIM capacitors which are formed in upper Back End of Line (BEOL) levels. An insulator layer is selectively formed to encapsulate at least a top plate of the MIM capacitor to protect the MIM capacitor from damage due to process steps such as, for example, reactive ion etching. By selective formation of the insulator layer on the MIM capacitor, openings in the inter-level dielectric layers are provided so that hydrogen and/or deuterium diffusion to the FETs can occur.
    Type: Application
    Filed: May 13, 2005
    Publication date: September 1, 2005
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Wagdi Abadeer, Eric Adler, Zhong-Xiang He, Bradley Orner, Vidhya Ramachandran, Barbara Waterhouse, Michael Zierak
  • Patent number: 6913965
    Abstract: The present invention relates to metal-insulator-metal (MIM) capacitors and field effect transistors (FETs) formed on a semiconductor substrate. The FETs are formed in Front End of Line (FEOL) levels below the MIM capacitors which are formed in upper Back End of Line (BEOL) levels. An insulator layer is selectively formed to encapsulate at least a top plate of the MIM capacitor to protect the MIM capacitor from damage due to process steps such as, for example, reactive ion etching. By selective formation of the insulator layer on the MIM capacitor, openings in the inter-level dielectric layers are provided so that hydrogen and/or deuterium diffusion to the FETs can occur.
    Type: Grant
    Filed: April 15, 2004
    Date of Patent: July 5, 2005
    Assignee: International Busniess Machines Corporation
    Inventors: Wagdi W. Abadeer, Eric Adler, Zhong-Xiang He, Bradley Orner, Vidhya Ramachandran, Barbara A. Waterhouse, Michael Zierak
  • Publication number: 20050112794
    Abstract: A bond pad upon which a wirebond interconnection is formed, consisting of a first bond pad layer formed on a chip, and a second bond pad layer formed on the first bond pad layer, wherein the first bond pad layer is more resistant to removal than the second bond pad layer during probe testing, and the first bond pad layer increases resistance to interconnection failure during mechanical testing.
    Type: Application
    Filed: November 20, 2003
    Publication date: May 26, 2005
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen Cole, William Murphy, Barbara Waterhouse
  • Publication number: 20050104188
    Abstract: An RF structure that includes an optimum padset for wire bonding and a high performance inductor that contains relatively thick metal inductor wires, both of which are located atop the final interconnect level of an interconnect structure. Specifically, the RF structure includes a dielectric layer having metal inductor wires of a first thickness and a metal bond pad having a major area of a second thickness located on a surface thereof, wherein the first thickness is greater than the second thickness. In the inventive RF structure, the majority of the metal bond pad is thinned for wire bonding, while maintaining the full metal wire thickness in the other areas of the structure for inductor performance requirements, such as, for example, low resistivity. Methods for fabricating the aforementioned RF structure are also provided.
    Type: Application
    Filed: November 19, 2003
    Publication date: May 19, 2005
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Douglas Coolbaugh, Zhong-Xiang He, Wolfgang Sauter, Barbara Waterhouse