Patents by Inventor Barbara Bazer-Bachi

Barbara Bazer-Bachi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9082924
    Abstract: The present invention relates to a method for preparing, on a silicon wafer, an n+pp+ or p+nn+ structure which includes the following consecutive steps: a) on a p or n silicon wafer (1), which includes a front surface (8) and a rear surface (9), a layer of boron-doped silicon oxide (BSG) (2) is formed on the rear surface (9) by PECVD, followed by a SiOx diffusion barrier (3); b) a source of phosphorus is diffused such that the phosphorus and the boron co-diffuse and in order also to form: on the front surface (8) of the wafer obtained at the end of step a), a layer of phosphorus-doped silicon oxide (PSG) (4) and an n+ doped area (5); and on the rear surface of the wafer obtained at the end of step a), a boron-rich area (BRL) (6), as well as a p+ doped area (7); c) the layers of BSG (2) and PSG (4) oxides and SiOx (3) are removed, the BRL (6) is oxidized and the layer resulting from said oxidation is removed.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: July 14, 2015
    Assignees: EDF ENR PWT, SYNERGIES POUR EQUIPEMENTS MICRO-ELECTRONIQUE COMMUNICATION OPTIQUE SA, INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE LYON, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    Inventors: Barbara Bazer-Bachi, Mustapha Lemiti, Nam Le Quang, Yvon Pellegrin
  • Publication number: 20130112260
    Abstract: The present invention relates to a method for preparing, on a silicon wafer, an n+pp+ or p+nn+ structure which includes the following consecutive steps: a) on a p or n silicon wafer (1), which includes a front surface (8) and a rear surface (9), a layer of boron-doped silicon oxide (BSG) (2) is formed on the rear surface (9) by PECVD, followed by a SiOx diffusion barrier (3); b) a source of phosphorus is diffused such that the phosphorus and the boron co-diffuse and in order also to form: on the front surface (8) of the wafer obtained at the end of step a), a layer of phosphorus-doped silicon oxide (PSG) (4) and an n+ doped area (5); and on the rear surface of the wafer obtained at the end of step a), a boron-rich area (BRL) (6), as well as a p+ doped area (7); c) the layers of BSG (2) and PSG (4) oxides and SiOx (3) are removed, the BRL (6) is oxidised and the layer resulting from said oxidation is removed.
    Type: Application
    Filed: April 26, 2011
    Publication date: May 9, 2013
    Applicants: PHOTOWATT INTERNATIONAL, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE LYON, SYNERGIES POUR EQUIPEMENTS MICRO-ELECTRONIQUE COMMUNICATION OPTIQUE SA
    Inventors: Barbara Bazer-Bachi, Mustapha Lemiti, Nam Le Quang, Yvon Pellegrin