Patents by Inventor Barbara Gibb

Barbara Gibb has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8543208
    Abstract: An interactive implantable medical device system includes an implantable medical device and a network-enabled external device capable of bi-directional communication and interaction with the implantable medical device. The external device is programmed to interact with other similarly-enabled devices. The system facilitates improved patient care by eliminating unnecessary geographic limitations on implantable medical device interrogation and programming, and by allowing patients, physicians, and other users to access medical records, history, and information and to receive status and care-related alerts and messages anywhere there is access to a communications network.
    Type: Grant
    Filed: September 7, 2009
    Date of Patent: September 24, 2013
    Assignee: NeuroPace, Inc.
    Inventors: Benjamin D. Pless, David R. Fischell, Barbara Gibb, Lisa Guzzo, Adrian R. M. Upton
  • Patent number: 8538514
    Abstract: Described here are implantable devices and methods for monitoring physiological information relating to sleep. The implantable devices are generally designed to include at least one sensor for sensing physiological information, a processor for processing the physiological information using low computational power to detect a sleep stage, and a battery. The detected sleep stage information may then be used to indicate sleep quality, identify or monitor a medical condition, or guide treatment thereof.
    Type: Grant
    Filed: January 2, 2013
    Date of Patent: September 17, 2013
    Assignee: NeuroPace, Inc.
    Inventors: Felice Sun, Benjamin D. Pless, Barbara Gibb
  • Publication number: 20130073003
    Abstract: In some embodiments, the power generator for converting mechanical energy to electrical energy may include a compressible element adapted and configured to be placed in an environment having a variable compressive force such as varying ambient pressures. The compressible element may be compressed by a force applied by the variable pressure to the compressible element. The power generator may further include a transducer that may be coupled to the compressible element and that may convert mechanical energy from the compression of the compressible element to electrical energy. In some embodiments, the power generator may be adapted to be an implantable power generator for converting mechanical energy from a patient to electrical energy, such that the compressible element adapted and configured to be placed between two adjacent tissue layers of the patient and to be compressed by a force applied from the two adjacent tissue layers to the compressible element.
    Type: Application
    Filed: November 12, 2012
    Publication date: March 21, 2013
    Inventors: Benjamin David Pless, Carl Lance Boling, Barbara Gibb, Adolf van der Heide, Brett M. Wingeier
  • Patent number: 8369940
    Abstract: Described here are implantable devices and methods for monitoring physiological information relating to sleep. The implantable devices are generally designed to include at least one sensor for sensing physiological information, a processor for processing the physiological information using low computational power to detect a sleep stage, and a battery. The detected sleep stage information may then be used to indicate sleep quality, identify or monitor a medical condition, or guide treatment thereof.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: February 5, 2013
    Assignee: NeuroPace, Inc.
    Inventors: Felice Sun, Benjamin D Pless, Barbara Gibb
  • Patent number: 8311632
    Abstract: In some embodiments, the power generator for converting mechanical energy to electrical energy is described may include a compressible element adapted and configured to be placed in an environment having a variable compressive force such as varying ambient pressures. The compressible element may be compressed by a force applied by the variable pressure to the compressible element. The power generator may further include a transducer that may be coupled to the compressible element and that may convert mechanical energy from the compression of the compressible element to electrical energy. In some embodiments, the power generator may be adapted to be an implantable power generator for converting mechanical energy from a patient to electrical energy, such that the compressible element adapted and configured to be placed between two adjacent tissue layers of the patient and to be compressed by a force applied from the two adjacent tissue layers to the compressible element.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: November 13, 2012
    Assignee: Autonomic Technologies, Inc.
    Inventors: Benjamin David Pless, Carl Lance Boling, Barbara Gibb, Adolf van der Heide, Brett M. Wingeier
  • Patent number: 8293813
    Abstract: The present invention provides a demineralized bone carrier matrix which is tolerant of bending, stretching and compression. The material comprises a carrier base material cross-linked with a multifunctional polymer. Demineralized bone matrix may be dispersed with the carrier matrix. The demineralized bone carrier matrix may be used as a bone graph substitute. Methods for making the carrier matrix are also provided.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: October 23, 2012
    Assignee: Biomet Manufacturing Corporation
    Inventors: Karen Troxel, Barbara Gibbs
  • Patent number: 8140160
    Abstract: An interactive implantable medical device system includes an implantable medical device and a network-enabled external device capable of bi-directional communication and interaction with the implantable medical device. The external device is programmed to interact with other similarly-enabled devices. The system facilitates improved patient care by eliminating unnecessary geographic limitations on implantable medical device interrogation and programming, and by allowing patients, physicians, and other users to access medical records, history, and information and to receive status and care-related alerts and messages anywhere there is access to a communications network.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: March 20, 2012
    Assignee: NeuroPace, Inc.
    Inventors: Benjamin D. Pless, David R. Fischell, Barbara Gibb, Lisa Guzzo, Adrian R. M. Upton
  • Publication number: 20120035431
    Abstract: Described here are implantable devices and methods for monitoring physiological information relating to sleep. The implantable devices are generally designed to include at least one sensor for sensing physiological information, a processor for processing the physiological information using low computational power to detect a sleep stage, and a battery. The detected sleep stage information may then be used to indicate sleep quality, identify or monitor a medical condition, or guide treatment thereof.
    Type: Application
    Filed: October 14, 2011
    Publication date: February 9, 2012
    Applicant: NEUROPACE, INC.
    Inventors: Felice Sun, Benjamin D Pless, Barbara Gibb
  • Patent number: 8068904
    Abstract: Described here are implantable devices and methods for monitoring physiological information relating to sleep. The implantable devices are generally designed to include at least one sensor for sensing physiological information, a processor for processing the physiological information using low computational power to detect a sleep stage, and a battery. The detected sleep stage information may then be used to indicate sleep quality, identify or monitor a medical condition, or guide treatment thereof.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: November 29, 2011
    Assignee: NeuroPace, Inc.
    Inventors: Felice Sun, Benjamin D Pless, Barbara Gibb
  • Publication number: 20110112381
    Abstract: Described here are implantable devices and methods for monitoring physiological information relating to sleep. The implantable devices are generally designed to include at least one sensor for sensing physiological information, a processor for processing the physiological information using low computational power to detect a sleep stage, and a battery. The detected sleep stage information may then be used to indicate sleep quality, identify or monitor a medical condition, or guide treatment thereof.
    Type: Application
    Filed: December 17, 2010
    Publication date: May 12, 2011
    Applicant: NEUROPACE, INC.
    Inventors: Felice Sun, Benjamin D. Pless, Barbara Gibb
  • Patent number: 7894890
    Abstract: Described here are implantable devices and methods for monitoring physiological information relating to sleep. The implantable devices are generally designed to include at least one sensor for sensing physiological information, a processor for processing the physiological information using low computational power to detect a sleep stage, and a battery. The detected sleep stage information may then be used to indicate sleep quality, identify or monitor a medical condition, or guide treatment thereof.
    Type: Grant
    Filed: February 9, 2007
    Date of Patent: February 22, 2011
    Assignee: Neuropace, Inc.
    Inventors: Felice Sun, Benjamin D. Pless, Barbara Gibb
  • Publication number: 20100331717
    Abstract: A system and method for detecting and predicting neurological events with an implantable device uses a relatively low-power central processing unit in connection with signal processing circuitry to identify features (including half waves) and calculate window-based characteristics (including line lengths and areas under the curve of the waveform) in an electrographic signal received from a patient's brain. The features and window-based characteristics are combinable in various ways according to the invention to detect and predict neurological events in real time, enabling responsive action by the implantable device.
    Type: Application
    Filed: September 12, 2010
    Publication date: December 30, 2010
    Applicant: NEUROPACE, INC.
    Inventors: Benjamin D. Pless, Stephen T. Archer, Craig M. Baysinger, Barbara Gibb, Suresh Gurunathan, Bruce Kirkpatrick, Thomas K. Tcheng
  • Patent number: 7813793
    Abstract: A system and method for detecting and predicting neurological events with an implantable device uses a relatively low-power central processing unit in connection with signal processing circuitry to identify features (including half waves) and calculate window-based characteristics (including line lengths and areas under the curve of the waveform) in an electrographic signal received from a patient's brain. The features and window-based characteristics are combinable in various ways according to the invention to detect and predict neurological events in real time, enabling responsive action by the implantable device.
    Type: Grant
    Filed: October 25, 2004
    Date of Patent: October 12, 2010
    Assignee: NeuroPace, Inc.
    Inventors: Benjamin D. Pless, Stephen T. Archer, Craig M. Baysinger, Barbara Gibb, Suresh Gurunathan, Bruce Kirkpatrick, Thomas K. Tcheng
  • Publication number: 20090326610
    Abstract: An interactive implantable medical device system includes an implantable medical device and a network-enabled external device capable of bi-directional communication and interaction with the implantable medical device. The external device is programmed to interact with other similarly-enabled devices. The system facilitates improved patient care by eliminating unnecessary geographic limitations on implantable medical device interrogation and programming, and by allowing patients, physicians, and other users to access medical records, history, and information and to receive status and care-related alerts and messages anywhere there is access to a communications network.
    Type: Application
    Filed: September 7, 2009
    Publication date: December 31, 2009
    Inventors: Benjamin D. Pless, David R. Fischell, Barbara Gibb, Lisa Guzzo, Adrian R.M. Upton
  • Publication number: 20090227704
    Abstract: The present invention provides a demineralized bone carrier matrix which is tolerant of bending, stretching and compression. The material comprises a carrier base material cross-linked with a multifunctional polymer. Demineralized bone matrix may be dispersed with the carrier matrix. The demineralized bone carrier matrix may be used as a bone graph substitute. Methods for making the carrier matrix are also provided.
    Type: Application
    Filed: March 4, 2009
    Publication date: September 10, 2009
    Inventors: Karen Troxel, Barbara Gibbs
  • Publication number: 20090216292
    Abstract: In some embodiments, the power generator for converting mechanical energy to electrical energy is described may include a compressible element adapted and configured to be placed in an environment having a variable compressive force such as varying ambient pressures. The compressible element may be compressed by a force applied by the variable pressure to the compressible element. The power generator may further include a transducer that may be coupled to the compressible element and that may convert mechanical energy from the compression of the compressible element to electrical energy. In some embodiments, the power generator may be adapted to be an implantable power generator for converting mechanical energy from a patient to electrical energy, such that the compressible element adapted and configured to be placed between two adjacent tissue layers of the patient and to be compressed by a force applied from the two adjacent tissue layers to the compressible element.
    Type: Application
    Filed: February 25, 2009
    Publication date: August 27, 2009
    Inventors: Benjamin David Pless, Carl Lance Boling, Barbara Gibb, Adolf van der Heide, Brett M. Wingeier
  • Publication number: 20080195166
    Abstract: Described here are implantable devices and methods for monitoring physiological information relating to sleep. The implantable devices are generally designed to include at least one sensor for sensing physiological information, a processor for processing the physiological information using low computational power to detect a sleep stage, and a battery. The detected sleep stage information may then be used to indicate sleep quality, identify or monitor a medical condition, or guide treatment thereof.
    Type: Application
    Filed: February 9, 2007
    Publication date: August 14, 2008
    Inventors: Felice Sun, Benjamin D. Pless, Barbara Gibb
  • Patent number: 7136695
    Abstract: An epileptiform activity patient-specific template creation system permits a user to efficiently develop an optimized set of patient-specific parameters for epileptiform activity detection algorithms. The epileptiform activity patient template creation system is primarily directed for use with an implantable neurostimulator system having EEG storage capability, in conjunction with a computer software program operating within a computer workstation having a processor, disk storage and input/output facilities for storing, processing and displaying patient EEG signals. The implantable neurostimulator is operative to store records of EEG data when neurological events are detected, when it receives external commands to record, or at preset or random times. The computer workstation operates on stored and uploaded records of EEG data to derive the patient-specific templates.
    Type: Grant
    Filed: October 12, 2001
    Date of Patent: November 14, 2006
    Inventors: Benjamin D. Pless, Thomas K. Tcheng, Eyad Kishawi, Barbara Gibb, Javier Echauz, Rosana Esteller
  • Publication number: 20060212092
    Abstract: An interactive implantable medical device system includes an implantable medical device and a network-enabled external device capable of bi-directional communication and interaction with the implantable medical device. The external device is programmed to interact with other similarly-enabled devices. The system facilitates improved patient care by eliminating unnecessary geographic limitations on implantable medical device interrogation and programming, and by allowing patients, physicians, and other users to access medical records, history, and information and to receive status and care-related alerts and messages anywhere there is access to a communications network.
    Type: Application
    Filed: May 16, 2006
    Publication date: September 21, 2006
    Inventors: Benjamin Pless, David Fischell, Barbara Gibb, Lisa Guzzo, Adrian Upton
  • Patent number: 6810285
    Abstract: A system and method for detecting and predicting neurological events with an implantable device uses a relatively low-power central processing unit in connection with signal processing circuitry to identify features (including half waves) and calculate window-based characteristics (including line lengths and areas under the curve of the waveform) in an electrographic signal received from a patient's brain. The features and window-based characteristics are combinable in various ways according to the invention to detect and predict neurological events in real time, enabling responsive action by the implantable device.
    Type: Grant
    Filed: June 28, 2001
    Date of Patent: October 26, 2004
    Assignee: NeuroPace, Inc.
    Inventors: Benjamin D. Pless, Stephen T. Archer, Craig M. Baysinger, Barbara Gibb, Suresh K. Gurunathan, Bruce Kirkpatrick, Thomas K. Tcheng