Patents by Inventor Barbara Jane Hinch

Barbara Jane Hinch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9000364
    Abstract: An electrostatic ion trap confines ions of different mass to charge ratios and kinetic energies within an anharmonic potential well. The ion trap is also provided with a small amplitude AC drive that excites confined ions. The mass dependent amplitudes of oscillation of the confined ions are increased as their energies increase, due to an autoresonance between the AC drive frequency and the natural oscillation frequencies of the ions, until the oscillation amplitudes of the ions exceed the physical dimensions of the trap, or the ions fragment or undergo any other physical or chemical transformation.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: April 7, 2015
    Assignee: MKS Instruments, Inc.
    Inventors: Alexei Victorovich Ermakov, Barbara Jane Hinch
  • Patent number: 8586918
    Abstract: An ion trap includes an electrode structure, including a first and a second opposed mirror electrodes and a central lens therebetween, that produces an electrostatic potential in which ions are confined to trajectories at natural oscillation frequencies, the confining potential being anharmonic. The ion trap also includes an AC excitation source having an excitation frequency f that excites confined ions at a frequency of about twice the natural oscillation frequency of the ions, the AC excitation frequency source preferably being connected to the central lens. In one embodiment, the ion trap includes a scan control that mass selectively reduces a frequency difference between the AC excitation frequency and about twice the natural oscillation frequency of the ions.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: November 19, 2013
    Assignee: Brooks Automation, Inc.
    Inventors: Gerardo A. Brucker, Kenneth D. Van Antwerp, G. Jeffery Rathbone, Scott C. Heinbuch, Michael N. Schott, Barbara Jane Hinch, Alexei V. Ermakov
  • Publication number: 20100084549
    Abstract: An electrostatic ion trap confines ions of different mass to charge ratios and kinetic energies within an anharmonic potential well. The ion trap is also provided with a small amplitude AC drive that excites confined ions. The mass dependent amplitudes of oscillation of the confined ions are increased as their energies increase, due to an autoresonance between the AC drive frequency and the natural oscillation frequencies of the ions, until the oscillation amplitudes of the ions exceed the physical dimensions of the trap, or the ions fragment or undergo any other physical or chemical transformation.
    Type: Application
    Filed: November 13, 2007
    Publication date: April 8, 2010
    Inventors: Alexei Victorovich Ermakov, Barbara Jane Hinch
  • Patent number: 7495216
    Abstract: The inventive apparatus measures workfunction values using deflection of an electron beam without direct contact of the electron beam with the sample surface. The apparatus, mounted within a vacuum chamber, includes an electron gun, a position sensitive electron detector, and a sample. The sample is located such that an electron beam emanating from the gun can approach the surface and then be deflected into the position sensitive electron detector. Workfunction values are then derived from a measured deflected-electron position distribution.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: February 24, 2009
    Inventors: Alexei Victorovich Ermakov, Barbara Jane Hinch
  • Patent number: 6448795
    Abstract: The inventive apparatus is capable of accurate contactless sample conductance measurements. In accordance with the invention, a three coil apparatus for inductive conductance measurements comprises at least three coils, (or inductive devices,) a radio frequency (RF) generating device in conjunction with electronic circuitry for radio frequency amplitude measurement and comparison of radio frequency amplitude signals. The attainable accuracy is improved over that achieved using other conventional non-contact means by processing the differences of RF amplitude signals observed across pairs of sensing coils. Also, this invention does not require more complex RF signal processing, such as analysis of in-phase and quadrature voltage data. In a preferred embodiment, the natural resonance frequencies of the two sensing coils are tuned slightly off the RF driving frequency such that a monotonic response across a wide range of the sample's conductivity is achieved.
    Type: Grant
    Filed: February 12, 1999
    Date of Patent: September 10, 2002
    Inventors: Alexei Ermakov, Barbara Jane Hinch