Patents by Inventor Barbara K. Lograsso

Barbara K. Lograsso has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5851317
    Abstract: A composite material comprises an aluminum or aluminum alloy matrix having generally spherical, atomized quasicrystalline aluminum-transition metal alloy reinforcement particles disposed in the matrix to improve mechanical properties. A composite article can be made by consolidating generally spherical, atomized quaiscrystalline aluminum-transition metal alloy particles and aluminum or aluminum alloy particles to form a body that is cold and/or hot reduced to form composite products, such as composite plate or sheet, with interfacial bonding between the quasicrystalline particles and the aluminum or aluminum alloy matrix without damage (e.g. cracking or shape change) of the reinforcement particles. The cold and/or hot worked compositehibits substantially improved yield strength, tensile strength, Young's modulus (stiffness).
    Type: Grant
    Filed: January 31, 1997
    Date of Patent: December 22, 1998
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Suleyman B. Biner, Daniel J. Sordelet, Barbara K. Lograsso, Iver E. Anderson
  • Patent number: 5811187
    Abstract: Apparatus and method for making powder from a metallic melt by atomizing the melt to form droplets and reacting the droplets downstream of the atomizing location with a reactive gas. The droplets are reacted with the gas at a temperature where a solidified exterior surface is formed thereon and where a protective refractory barrier layer (reaction layer) is formed whose penetration into the droplets is limited by the presence of the solidified surface so as to avoid selective reduction of key reactive alloyants needed to achieve desired powder end use properties. The barrier layer protects the reactive powder particles from environmental constituents such as air and water in the liquid or vapor form during subsequent fabrication of the powder to end-use shapes and during use in the intended service environment.
    Type: Grant
    Filed: June 24, 1996
    Date of Patent: September 22, 1998
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Iver E. Anderson, Barbara K. Lograsso, Robert L. Terpstra
  • Patent number: 5589199
    Abstract: Apparatus and method for making powder from a metallic melt by atomizing the melt to form droplets and reacting the droplets downstream of the atomizing location with a reactive gas. The droplets are reacted with the gas at a temperature where a solidified exterior surface is formed thereon and where a protective refractory barrier layer (reaction layer) is formed whose penetration into the droplets is limited by the presence of the solidified surface so as to avoid selective reduction of key reactive alloyants needed to achieve desired powder end use properties. The barrier layer protects the reactive powder particles from environmental constituents such as air and water in the liquid or vapor form during subsequent fabrication of the powder to end-use shapes and during use in the intended service environment.
    Type: Grant
    Filed: October 24, 1994
    Date of Patent: December 31, 1996
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Iver E. Anderson, Barbara K. Lograsso, Robert L. Terpstra
  • Patent number: 5523049
    Abstract: A heat sink composed of thermally conductive particles dispersed in a monolithic structure having a continuous microstructure; and the method of forming a heat sink by molding the heat sink from a thermoplastic or epoxy material which has been filled with thermally conductive particles, debinding the molded heat sink and densifying the debound heat sink into a monolithic structure.
    Type: Grant
    Filed: November 1, 1994
    Date of Patent: June 4, 1996
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Robert L. Terpstra, Barbara K. Lograsso, Iver E. Anderson, Jeffrey A. Moore
  • Patent number: 5470401
    Abstract: An isotropic permanent magnet is made by mixing a thermally responsive, low viscosity binder and atomized rare earth-transition metal (e.g., iron) alloy powder having a carbon-bearing (e.g., graphite) layer thereon that facilitates wetting and bonding of the powder particles by the binder. Prior to mixing with the binder, the atomized alloy powder may be sized or classified to provide a particular particle size fraction having a grain size within a given relatively narrow range. A selected particle size fraction is mixed with the binder and the mixture is molded to a desired complex magnet shape. A molded isotropic permanent magnet is thereby formed. A sintered isotropic permanent magnet can be formed by removing the binder from the molded mixture and thereafter sintering to full density.
    Type: Grant
    Filed: July 26, 1993
    Date of Patent: November 28, 1995
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: R. William McCallum, Kevin W. Dennis, Barbara K. Lograsso, Iver E. Anderson
  • Patent number: 5372629
    Abstract: Apparatus and method for making powder from a metallic melt by atomizing the melt to form droplets and reacting the droplets downstream of the atomizing location with a reactive gas. The droplets are reacted with the gas at a temperature where a solidified exterior surface is formed thereon and where a protective refractory barrier layer (reaction layer) is formed whose penetration into the droplets is limited by the presence of the solidified surface so as to avoid selective reduction of key reactive alloyants needed to achieve desired powder end use properties. The barrier layer protects the reactive powder particles from environmental constituents such as air and water in the liquid or vapor form during subsequent fabrication of the powder to end-use shapes and during use in the intended service environment.
    Type: Grant
    Filed: August 5, 1992
    Date of Patent: December 13, 1994
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Iver E. Anderson, Barbara K. Lograsso, Robert L. Terpstra
  • Patent number: 5368657
    Abstract: A metallic melt is atomized using a high pressure atomizing gas wherein the temperature of the melt and the composition of the atomizing gas are selected such that the gas and melt react in the atomization spray zone to form a refractory or intermetallic compound in the as-atomized powder particles.A metallic melt is also atomized using a high pressure atomizing gas mixture gas wherein the temperature of the melt and the ratio of a reactive gas to a carrier gas are selected to form powder particles comprising a supersaturated solid solution of the atomic species of the reactive gas in the particles. The powder particles are then heat treated to precipitate dispersoids in-situ therein to form a dispersion strengthened material.
    Type: Grant
    Filed: April 13, 1993
    Date of Patent: November 29, 1994
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Iver E. Anderson, Barbara K. Lograsso, Timothy W. Ellis
  • Patent number: 5366688
    Abstract: A heat sink composed of metal particles dispersed in a binder or a sintered structure in which the binder is removed; and the method of forming a heat sink by molding the heat sink from a thermoplastic or epoxy material which has been filled with metal particles.
    Type: Grant
    Filed: March 10, 1994
    Date of Patent: November 22, 1994
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Robert L. Terpstra, Barbara K. Lograsso, Iver E. Anderson, Jeffrey A. Moore
  • Patent number: 5242508
    Abstract: A method for making an isotropic permanent magnet comprises atomizing a melt of a rare earth-transition metal alloy (e.g., an Nd--Fe--B alloy enriched in Nd and B) under conditions to produce protectively coated, rapidly solidified, generally spherical alloy particles wherein a majority of the particles are produced/size classified within a given size fraction (e.g., 5 to 40 microns diameter) exhibiting optimum as-atomized magnetic properties and subjecting the particles to concurrent elevated temperature and elevated isotropic pressure for a time effective to yield a densified, magnetically isotropic magnet compact having enhanced magnetic properties and mechanical properties.
    Type: Grant
    Filed: April 15, 1992
    Date of Patent: September 7, 1993
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: R. William McCallum, Kevin W. Dennis, Barbara K. Lograsso, Iver E. Anderson
  • Patent number: 5240513
    Abstract: An isotropic permanent magnet is made by mixing a thermally responsive, low viscosity binder and atomized rare earth-transition metal (e.g., iron) alloy powder having a carbon-bearing (e.g., graphite) layer thereon that facilitates wetting and bonding of the powder particles by the binder. Prior to mixing with the binder, the atomized alloy powder may be sized or classified to provide a particular particle size fraction having a grain size within a given relatively narrow range. A selected particle size fraction is mixed with the binder and the mixture is molded to a desired complex magnet shape. A molded isotropic permanent magnet is thereby formed. A sintered isotropic permanent magnet can be formed by removing the binder from the molded mixture and thereafter sintering to full density.
    Type: Grant
    Filed: October 9, 1990
    Date of Patent: August 31, 1993
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: R. William McCallum, Kevin W. Dennis, Barbara K. Lograsso, Iver E. Anderson