Patents by Inventor Barbara L. Casey

Barbara L. Casey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230206461
    Abstract: Methods, devices, and systems associated with identifying data to transform are described. A method can include receiving, at a model stored on a computing device, data comprising a number of images, receiving, at the model, an input from a user, identifying, via the model, a number of attributes based on the input from the user, and identifying, via the model, a portion of an image of the number of images including at least one of the number of attributes to transform.
    Type: Application
    Filed: January 20, 2022
    Publication date: June 29, 2023
    Inventors: Barbara L. Casey, Madison E. Wale, Sri Divya Deenadayalan, Surabhi Anurag
  • Publication number: 20230044007
    Abstract: Methods, apparatuses, and non-transitory machine-readable media associated with seizure risk determination are described. A seizure risk determination can include receiving signaling from a radio in communication with a processing resource configured to monitor patient health data of a patient, signaling from a radio in communication with a processing resource configured to monitor health provider data associated with seizures, and signaling from a radio in communication with a processing resource configured to monitor environmental data associated with the patient. The seizure risk determination can include determining a seizure baseline for the patient and a seizure risk for the patient based on the signaling. The seizure risk determination can include identifying output data representative of a seizure plan for the patient and transmitting the output data representative of the seizure plan.
    Type: Application
    Filed: August 3, 2021
    Publication date: February 9, 2023
    Inventors: Barbara L. Casey, Carla L. Christensen, Akshaya Venkatakrishnan, Anusha Gunda, Yixin Yan
  • Patent number: 10790290
    Abstract: A 3D NAND storage device includes a plurality of layers containing doped semiconductor material interleaved with a plurality of layers of dielectric material. Each of the pillars forming the 3D NAND storage device includes a plurality of memory cells and a drain-end select gate (SGD). The pillars are separated by a hollow channel in which a plurality of film layers, including at least a lower film layer and an upper film layer have been deposited. The systems and methods described herein remove at least the upper film layer proximate the SGD while maintaining the film layers proximate the memory cells. Such an arrangement beneficially permits tailoring the film layers proximate the SGD prior to depositing the channel film layer in the hollow channel. The systems and methods described herein permit the deposition of a continuous channel film layer proximate both the memory cells and the SGD.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: September 29, 2020
    Assignee: Intel Corporation
    Inventors: David A. Daycock, Purnima Narayanan, John Hopkins, Guoxing Duan, Barbara L. Casey, Christopher J. Larsen, Meng-Wei Kuo, Qian Tao
  • Patent number: 10541252
    Abstract: Some embodiments include a memory array which has a vertical stack of alternating insulative levels and wordline levels. The wordline levels have terminal ends corresponding to control gate regions. Charge-trapping material is along the control gate regions of the wordline levels and not along the insulative levels. The charge-trapping material is spaced from the control gate regions by charge-blocking material. Channel material extends vertically along the stack and is laterally spaced from the charge-trapping material by dielectric material. Some embodiments include methods of forming NAND memory arrays.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: January 21, 2020
    Assignee: Micron Technology, Inc.
    Inventors: David Daycock, Richard J. Hill, Christopher Larsen, Woohee Kim, Justin B. Dorhout, Brett D. Lowe, John D. Hopkins, Qian Tao, Barbara L. Casey
  • Publication number: 20190267396
    Abstract: Some embodiments include a memory array which has a vertical stack of alternating insulative levels and wordline levels. The wordline levels have terminal ends corresponding to control gate regions. Charge-trapping material is along the control gate regions of the wordline levels and not along the insulative levels. The charge-trapping material is spaced from the control gate regions by charge-blocking material. Channel material extends vertically along the stack and is laterally spaced from the charge-trapping material by dielectric material. Some embodiments include methods of forming NAND memory arrays.
    Type: Application
    Filed: May 13, 2019
    Publication date: August 29, 2019
    Applicant: Micron Technology, Inc.
    Inventors: David Daycock, Richard J. Hill, Christopher Larsen, Woohee Kim, Justin B. Dorhout, Brett D. Lowe, John D. Hopkins, Qian Tao, Barbara L. Casey
  • Patent number: 10304853
    Abstract: Some embodiments include a memory array which has a vertical stack of alternating insulative levels and wordline levels. The wordline levels have terminal ends corresponding to control gate regions. Charge-trapping material is along the control gate regions of the wordline levels and not along the insulative levels. The charge-trapping material is spaced from the control gate regions by charge-blocking material. Channel material extends vertically along the stack and is laterally spaced from the charge-trapping material by dielectric material. Some embodiments include methods of forming NAND memory arrays.
    Type: Grant
    Filed: July 10, 2018
    Date of Patent: May 28, 2019
    Assignee: Micron Technology, Inc.
    Inventors: David Daycock, Richard J. Hill, Christopher Larsen, Woohee Kim, Justin B. Dorhout, Brett D. Lowe, John D. Hopkins, Qian Tao, Barbara L. Casey
  • Publication number: 20190103410
    Abstract: A 3D NAND storage device includes a plurality of layers containing doped semiconductor material interleaved with a plurality of layers of dielectric material. Each of the pillars forming the 3D NAND storage device includes a plurality of memory cells and a drain-end select gate (SGD). The pillars are separated by a hollow channel in which a plurality of film layers, including at least a lower film layer and an upper film layer have been deposited. The systems and methods described herein remove at least the upper film layer proximate the SGD while maintaining the film layers proximate the memory cells. Such an arrangement beneficially permits tailoring the film layers proximate the SGD prior to depositing the channel film layer in the hollow channel. The systems and methods described herein permit the deposition of a continuous channel film layer proximate both the memory cells and the SGD.
    Type: Application
    Filed: September 29, 2017
    Publication date: April 4, 2019
    Applicant: INTEL CORPORATION
    Inventors: DAVID A. DAYCOCK, PURNIMA NARAYANAN, JOHN HOPKINS, GUOXING DUAN, BARBARA L. CASEY, CHRISTOPHER J. LARSEN, MENG-WEI KUO, QIAN TAO
  • Publication number: 20180323212
    Abstract: Some embodiments include a memory array which has a vertical stack of alternating insulative levels and wordline levels. The wordline levels have terminal ends corresponding to control gate regions. Charge-trapping material is along the control gate regions of the wordline levels and not along the insulative levels. The charge-trapping material is spaced from the control gate regions by charge-blocking material. Channel material extends vertically along the stack and is laterally spaced from the charge-trapping material by dielectric material. Some embodiments include methods of forming NAND memory arrays.
    Type: Application
    Filed: July 10, 2018
    Publication date: November 8, 2018
    Applicant: Micron Technology, Inc.
    Inventors: David Daycock, Richard J. Hill, Christopher Larsen, Woohee Kim, Justin B. Dorhout, Brett D. Lowe, John D. Hopkins, Qian Tao, Barbara L. Casey
  • Patent number: 10083981
    Abstract: Some embodiments include a memory array which has a vertical stack of alternating insulative levels and wordline levels. The wordline levels have terminal ends corresponding to control gate regions. Charge-trapping material is along the control gate regions of the wordline levels and not along the insulative levels. The charge-trapping material is spaced from the control gate regions by charge-blocking material. Channel material extends vertically along the stack and is laterally spaced from the charge-trapping material by dielectric material. Some embodiments include methods of forming NAND memory arrays.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: September 25, 2018
    Assignee: Micron Technology, Inc.
    Inventors: David Daycock, Richard J. Hill, Christopher Larsen, Woohee Kim, Justin B. Dorhout, Brett D. Lowe, John D. Hopkins, Qian Tao, Barbara L. Casey
  • Publication number: 20180219021
    Abstract: Some embodiments include a memory array which has a vertical stack of alternating insulative levels and wordline levels. The wordline levels have terminal ends corresponding to control gate regions. Charge-trapping material is along the control gate regions of the wordline levels and not along the insulative levels. The charge-trapping material is spaced from the control gate regions by charge-blocking material. Channel material extends vertically along the stack and is laterally spaced from the charge-trapping material by dielectric material. Some embodiments include methods of forming NAND memory arrays.
    Type: Application
    Filed: February 1, 2017
    Publication date: August 2, 2018
    Inventors: David Daycock, Richard J. Hill, Christopher Larsen, Woohee Kim, Justin B. Dorhout, Brett D. Lowe, John D. Hopkins, Qian Tao, Barbara L. Casey
  • Patent number: 6069087
    Abstract: A plasma-enhanced method of selectively etching silicon dielectrics, such as silicon nitride, silicon oxide, silicon oxynitride, or silicon oxime relative to photoresist in a single step. A combination of a fluorocarbon selectivity agent such as difluoromethane, and a fluorocarbon etchant gas such as carbon tetrafluoride or pentafluoroethane, is used as the source gas for the plasma etch. The source gas concentration is within the range of approximately 1:2 to 2:1 selectivity agent to etchant gas, and the resultant plasma etches silicon dielectric at a rate approximately four times as fast as photoresist. The process is particularly useful for the etching of silicon dielectric spacers, or silicon nitride layers in the initial stages of a LOCOS process.
    Type: Grant
    Filed: August 25, 1998
    Date of Patent: May 30, 2000
    Assignees: Micron Technology, Inc., Applied Materials, Inc.
    Inventors: David J. Keller, Barbara L. Casey