Patents by Inventor Barry Lanier

Barry Lanier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6896588
    Abstract: Light is incident on a semiconductor wafer polish surface and an adjacent reference surface (80). The reflected light from each surface is detected by a detector (35) positioned beneath the surfaces. The signals derived from each source of reflected light is analyzed in a electronic system (37) and an endpoint for a chemical mechanical polish process is determined as a function of both signals.
    Type: Grant
    Filed: October 3, 2003
    Date of Patent: May 24, 2005
    Assignee: Texas Instruments Incorporated
    Inventors: Barry Lanier, Brian E. Zinn
  • Publication number: 20050075055
    Abstract: Light is incident on a semiconductor wafer polish surface and an adjacent reference surface (80). The reflected light from each surface is detected by a detector (35) positioned beneath the surfaces. The signals derived from each source of reflected light is analyzed in a electronic system (37) and an endpoint for a chemical mechanical polish process is determined as a function of both signals.
    Type: Application
    Filed: October 3, 2003
    Publication date: April 7, 2005
    Inventors: Barry Lanier, Brian Zinn
  • Patent number: 6579798
    Abstract: A process for polishing a semiconductor wafer includes the steps of providing a plurality of wafers, forming a first layer, such as a barrier layer, over at least a portion of each wafer, and forming at least one layer including copper over at least a portion of each first layer. The process also includes the steps of providing a first polishing pad, providing a buffing pad, providing a plurality of operatively connected wafer carriers, and disposing a wafer within each of the wafer carriers. The process further includes the steps of disposing a first slurry composition on the first polishing pad and polishing a first wafer with the first polishing pad for a first length of time, in which the first polishing pad substantially removes the copper layer of the first wafer.
    Type: Grant
    Filed: September 24, 2001
    Date of Patent: June 17, 2003
    Assignee: Texas Instruments Incorporated
    Inventors: Basab Chatterjee, Mona Eissa, Chad Kaneshige, Vincent Korthuis, Barry Lanier, Satyavolu Papa Rao
  • Publication number: 20030060049
    Abstract: A process for polishing a semiconductor wafer includes the steps of providing a plurality of wafers, forming a first layer, such as a barrier layer, over at least a portion of each wafer, and forming at least one layer including copper over at least a portion of each first layer. The process also includes the steps of providing a first polishing pad, providing a buffing pad, providing a plurality of operatively connected wafer carriers, and disposing a wafer within each of the wafer carriers. The process further includes the steps of disposing a first slurry composition on the first polishing pad and polishing a first wafer with the first polishing pad for a first length of time, in which the first polishing pad substantially removes the copper layer of the first wafer.
    Type: Application
    Filed: September 24, 2001
    Publication date: March 27, 2003
    Inventors: Basab Chatterjee, Mona Eissa, Chad Kaneshige, Vincent Korthius, Barry Lanier, Satyavolu Papa Rao
  • Publication number: 20020049029
    Abstract: A chemical mechanical polishing machine includes a spindle operable to rotate with respect to a central axis. A wafer carrier may be coupled with the spindle, the wafer carrier operable to rotate in response to rotation of the spindle. A substrate may be coupled with the wafer carrier. In accordance with a particular embodiment of the present invention, a plurality of piezoelectric drive elements may be coupled with the wafer carrier.
    Type: Application
    Filed: October 11, 2001
    Publication date: April 25, 2002
    Inventors: Jeffrey L. Large, Barry Lanier
  • Patent number: 5473187
    Abstract: A hybrid semiconductor device which comprises a semiconductor substrate having electrical devices therein with a plurality of spaced apart relatively rigid standoffs of electrically insulating material disposed over the substrate. Each of the standoffs has a substantially planar exposed surface remote from the substrate. A first layer of electrically insulating material more resilient than the standoffs is disposed over the substrate and between the standoffs and has an upper surface coplanar with the planar exposed surfaces of the standoffs. A semiconductor superstrate is secured to the first layer of electrically insulating material, the superstrate containing electrical devices. A connection connects the electrical devices contained in the superstrate to the electrical devices in the substrate.
    Type: Grant
    Filed: September 13, 1994
    Date of Patent: December 5, 1995
    Assignee: Texas Instruments Incorporated
    Inventors: James C. Baker, Emily A. Groves, Douglas Paradis, Charles P. Monaghan, Barry Lanier, Thomas D. Bonifield, Julie S. England, Glenn A. Cerny
  • Patent number: 5405807
    Abstract: A method of making a hybrid semiconductor device and the device comprising providing a semiconductor substrate having electrical devices therein, providing a first resilient layer of electrically insulating material over the substrate which can be disposed directly onto the substrate with a substantially planar exposed surface, providing a second resilient layer of electrically insulating material over the first resilient layer which can be disposed directly onto the first layer with a substantially planar exposed surface, the second layer having a relatively resilient state and a rigid state, providing resilient standoff from the third resilient layer at spaced locations on the second layer by removing predetermined portions of the third layer, securing a semiconductor superstrate to the semiconductor device, forming electrical devices on the superstrate, and then connecting the electrical devices on the superstrate to the electrical devices on the substrate.
    Type: Grant
    Filed: March 31, 1993
    Date of Patent: April 11, 1995
    Assignee: Texas Instruments Incorporated
    Inventors: James C. Baker, Emily A. Groves, Douglas Paradis, Charles P. Monaghan, Barry Lanier, Thomas D. Bonifield, Julie S. England
  • Patent number: 5244839
    Abstract: A method of making a hybrid semiconductor device and the device comprising providing a semiconductor substrate having electrical devices therein, providing a first resilient layer of electrically insulating material over the substrate which can be disposed directly onto the substrate with a substantially planar exposed surface, providing a second resilient layer of electrically insulating material over the first resilient layer which can be disposed directly onto the first layer with a substantially planar exposed surface, the second layer having a relatively resilient state and a rigid state, providing resilient standoff from the third resilient layer at spaced locations on the second layer by removing predetermined portions of the third layer, securing a semiconductor superstrate to the semiconductor device, forming electrical devices on the superstrate, and then connecting the electrical devices on the superstrate to the electrical devices on the substrate.
    Type: Grant
    Filed: June 18, 1991
    Date of Patent: September 14, 1993
    Assignee: Texas Instruments Incorporated
    Inventors: James C. Baker, Emily A. Groves, Douglas Paradis, Charles P. Monaghan, Barry Lanier, Thomas D. Bonifield, Julie S. England, Glenn A. Cerny