Patents by Inventor Barry M. Ford

Barry M. Ford has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10794192
    Abstract: An airfoil for a turbine engine includes an airfoil having pressure and suction sides extending in a radial direction from a 0% span position at an inner flow path location to a 100% span position at an airfoil tip. The airfoil has a curve corresponding to a relationship between a trailing edge sweep angle and a span position. The trailing edge sweep angle is in a range of 0° to 10° in a range of 10-20% span position. The trailing edge sweep angle is in a range of the trailing edge sweep angle is positive from 0% span to at least 95% span.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: October 6, 2020
    Assignee: RAYTHEON TECHNOLOGIES CORPORATION
    Inventors: Edward J. Gallagher, Byron R. Monzon, Ling Liu, Linda S. Li, Darryl Whitlow, Barry M. Ford
  • Patent number: 10738627
    Abstract: A fan exit guide vane assembly for a gas turbine engine includes a plurality of guide vanes having a pressure side and a suction side extending between a leading edge and a trailing edge. The vanes further include a span extending between a root and tip with a stagger angle defined as an angle between a longitudinal axis parallel to an engine axis of rotation and a line connecting the leading edge and the trailing edge that is less than about 15°.
    Type: Grant
    Filed: January 15, 2018
    Date of Patent: August 11, 2020
    Assignee: Raytheon Technologies Corporation
    Inventors: Edward J. Gallagher, Glen E. Potter, Barry M. Ford
  • Patent number: 10550852
    Abstract: A gas turbine engine includes a combustion section arranged between a compressor section and a turbine section that extend in an axial direction. A fan section is arranged upstream from the compressor section. An airfoil is arranged in one of the fan section, the compressor section and the turbine section. The airfoil includes pressure and suction sides extending in a radial direction from a 0% span position at an inner flow path location to a 100% span position at an airfoil tip. The airfoil has a leading edge that is projected onto a plane from various views and the plane is perpendicular to a viewing direction which corresponds to the various views. The plane is parallel with the axial direction in a 0° view. The various views include the 0° view which projects into an axial plane in the axial direction. A 90° view projects into a tangential plane in a tangential direction normal to the axial direction and views between the 0° and 90° views.
    Type: Grant
    Filed: March 16, 2017
    Date of Patent: February 4, 2020
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventors: Edward J. Gallagher, Byron R. Monzon, Ling Liu, Linda S. Li, Darryl Whitlow, Barry M. Ford
  • Patent number: 10519971
    Abstract: An airfoil for a turbine engine includes pressure and suction sides that extend in a radial direction from a 0% span position at an inner flow path location to a 100% span position at an airfoil tip. The airfoil geometry corresponds to axial leading and trailing edge curves and an axial stacking offset curve. The airfoil extends from a root and a zero axial reference point corresponds to axial center of the root. XLE corresponds to an axial distance from a leading edge to the reference point at a given span position. XTE corresponds to a axial distance from a trailing edge to the reference point at a given span position. Xd corresponds to an axial stacking offset at a given span position. (XLE?Xd)/(Xd?XTE) at 100% span position is about 1 and (XLE?Xd)/(Xd?XTE) at 90% span position is about 1.
    Type: Grant
    Filed: August 22, 2014
    Date of Patent: December 31, 2019
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventors: Edward J. Gallagher, Byron R. Monzon, Ling Liu, Linda S. Li, Darryl Whitlow, Barry M. Ford
  • Patent number: 10422226
    Abstract: An airfoil for a turbine engine includes pressure and suction sides extending in a radial direction from a 0% span position at an inner flow path location to a 100% span position at an airfoil tip. The airfoil has a relationship between an axial leading edge location and a span position that is at least a third order polynomial with a generally U-shaped curve having an initial negative slope followed by a positive slope. The positive slope leans aftward and the negative slope leans forward. The curve has a critical point in the range of 30-50% span position at which the curve changes from the negative slope to the positive slope. The curve is generally linear from 55% span to 75% span and has a positive slope that increases at a rate of about 0.0875 inch (2.22 mm) per 1% span, +/?0.04 inch (1.01 mm) per 1% span.
    Type: Grant
    Filed: August 22, 2014
    Date of Patent: September 24, 2019
    Assignee: United Technologies Corporation
    Inventors: Edward J. Gallagher, Byron R. Monzon, Ling Liu, Linda S. Li, Darryl Whitlow, Barry M. Ford
  • Patent number: 10393139
    Abstract: An airfoil for a turbine engine includes pressure and suction sides that extend in a radial direction from a 0% span position at an inner flow path location to a 100% span position at an airfoil tip. The airfoil has a relationship between a tangential leading edge location and a span position that corresponds to a curve that is at least a third order polynomial with a generally S-shaped curve that has an initial negative slope followed by a positive slope and then a second negative slope. The positive slope leans toward the suction side and the negative slopes lean toward the pressure side.
    Type: Grant
    Filed: August 25, 2014
    Date of Patent: August 27, 2019
    Assignee: United Technologies Corporation
    Inventors: Edward J. Gallagher, Byron R. Monzon, Ling Liu, Linda S. Li, Darryl Whitlow, Barry M. Ford
  • Patent number: 10385866
    Abstract: In one exemplary embodiment, an airfoil for a turbine engine includes pressure and suction sides extending in a radial direction from a 0% span position at an inner flow path location to a 100% span position at an airfoil tip. The airfoil geometry corresponds to tangential leading and trailing edge curves and a tangential stacking offset curve. The airfoil extends from a root. A zero tangential reference point corresponds to tangential center of the root. YLE corresponds to a tangential distance from a leading edge to the reference point at a given span position. YTE corresponds to a tangential distance from a trailing edge to the reference point at a given span position. Yd corresponds to a tangential stacking offset at a given span position. (YLE?Yd)/(Yd?YTE) at 40% span position is about 1.5 and (YLE?Yd)/(Yd?YTE) at 20% span position is about 2.
    Type: Grant
    Filed: August 25, 2014
    Date of Patent: August 20, 2019
    Assignee: United Technologies Corporation
    Inventors: Edward J. Gallagher, Byron R. Monzon, Ling Liu, Linda S. Li, Darryl Whitlow, Barry M. Ford
  • Patent number: 10370974
    Abstract: An airfoil of a turbine engine includes pressure and suction sides that extend in a radial direction from a 0% span position at an inner flow path location to a 100% span position at an airfoil tip. The airfoil has a relationship between a tangential stacking offset and a span position that is at least a third order polynomial curve that includes at least one positive and negative slope. The positive slope leans toward the suction side and the negative slope leans toward the pressure side. An initial slope starts at the 0% span position is either zero or positive. The first critical point is less than 15% span.
    Type: Grant
    Filed: August 26, 2015
    Date of Patent: August 6, 2019
    Assignee: United Technologies Corporation
    Inventors: Edward J. Gallagher, Byron R. Monzon, Ling Liu, Linda S. Li, Darryl Whitlow, Barry M. Ford
  • Patent number: 10358925
    Abstract: An airfoil for a turbine engine includes pressure and suction sides that extend in a radial direction from a 0% span position at an inner flow path location to a 100% span position at an airfoil tip. The airfoil has a relationship between a stacking offset and a span position that includes at least one positive and negative slope. The positive slope leans aftward and the negative slope leans forward relative to an engine axis. The positive slope crosses an initial axial stacking offset corresponding to the 0% span position at a zero-crossing position. A first axial stacking offset X1 is provided from the zero-crossing position to a negative-most value on the curve. A second axial stacking offset X2 is provided from the zero-crossing position to a positive-most value on the curve. A ratio of the second to first axial stacking offset X2/X1 is less than 2.0.
    Type: Grant
    Filed: October 17, 2016
    Date of Patent: July 23, 2019
    Assignee: United Technologies Corporation
    Inventors: Edward J. Gallagher, Byron R. Monzon, Ling Liu, Linda S. Li, Darryl Whitlow, Barry M. Ford
  • Patent number: 10344601
    Abstract: A spacer assembly for a rotor assembly of a gas turbine engine includes an endwall segment having a non-axisymmetric flowpath surface, a first depression and a second depression. A perimeter of the flowpath surface includes a forward edge, an aft edge, a suction side edge and a pressure side edge. The first depression is formed along the flowpath surface adjoining the suction side edge, and the second depression is formed along the flowpath surface adjoining the pressure side edge.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: July 9, 2019
    Assignee: United Technologies Corporation
    Inventors: Matthew A. Turner, Andrew G. Alarcon, James Glaspey, Brian Green, Barry M. Ford, Renee J. Jurek
  • Patent number: 10309414
    Abstract: An airfoil for a turbine engine includes an airfoil that has pressure and suction sides that extend in a radial direction from a 0% span position at an inner flow path location to a 100% span position at an airfoil tip. The airfoil has a curve that corresponds to a relationship between a trailing edge sweep angle and a span position. The trailing edge sweep angle is in a range of 10° to 20° in a range of 40-70% span position. The trailing edge sweep angle is positive from 0% span to at least 95% span. The airfoil has a relationship between a leading edge dihedral and a span position. The leading edge dihedral is negative from the 0% span position to the 100% span position. A positive dihedral corresponds to suction side-leaning. A negative dihedral corresponds to pressure side-leaning. The trailing edge sweep angle is positive from 0%-95% span. A positive-most trailing edge sweep angle is within the range of 10° to 20° in the range of 40-70% span position. The airfoil is a fan blade for the turbine engine.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: June 4, 2019
    Assignee: United Technologies Corporation
    Inventors: Edward J. Gallagher, Byron R. Monzon, Ling Liu, Linda S. Li, Darryl Whitlow, Barry M. Ford
  • Publication number: 20190063227
    Abstract: An airfoil for a turbine engine includes an airfoil having pressure and suction sides extending in a radial direction from a 0% span position at an inner flow path location to a 100% span position at an airfoil tip. The airfoil has a curve corresponding to a relationship between a trailing edge sweep angle and a span position. The trailing edge sweep angle is in a range of 0° to 10° in a range of 10-20% span position. The trailing edge sweep angle is in a range of the trailing edge sweep angle is positive from 0% span to at least 95% span.
    Type: Application
    Filed: July 30, 2018
    Publication date: February 28, 2019
    Inventors: Edward J. Gallagher, Byron R. Monzon, Ling Liu, Linda S. Li, Darryl Whitlow, Barry M. Ford
  • Patent number: 10184483
    Abstract: An airfoil for a turbine engine includes pressure and suction sides that extend in a radial direction from a 0% span position at an inner flow path location to a 100% span position at an airfoil tip. The airfoil has a relationship between a total chord length and a span position and corresponds to a curve that has an increasing total chord length from the 0% span position to a first peak. The first peak occurs in the range of 45-65% span position, and the curve either remains constant or has a decreasing total chord length from the first peak toward the 100% span position. The total chord length is at the 0% span position in the range of 8.2-10.5 inches (20.8-26.7 cm). The curve is at least a third order polynomial and has an initial positive slope.
    Type: Grant
    Filed: March 8, 2016
    Date of Patent: January 22, 2019
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventors: Edward J. Gallagher, Byron R. Monzon, Ling Liu, Linda S. Li, Darryl Whitlow, Barry M. Ford
  • Patent number: 10036257
    Abstract: An airfoil for a turbine engine includes an airfoil having pressure and suction sides extending in a radial direction from a 0% span position at an inner flow path location to a 100% span position at an airfoil tip. The airfoil has a curve corresponding to a relationship between a trailing edge sweep angle and a span position. The trailing edge sweep angle is in a range of 10° to 20° in a range of 40-70% span position. The trailing edge sweep angle is positive from 0% span to at least 95% span.
    Type: Grant
    Filed: February 18, 2015
    Date of Patent: July 31, 2018
    Assignee: United Technologies Corporation
    Inventors: Edward J. Gallagher, Byron R. Monzon, Ling Liu, Linda S. Li, Darryl Whitlow, Barry M. Ford
  • Publication number: 20180156048
    Abstract: A fan exit guide vane assembly for a gas turbine engine includes a plurality of guide vanes having a pressure side and a suction side extending between a leading edge and a trailing edge. The vanes further include a span extending between a root and tip with a stagger angle defined as an angle between a longitudinal axis parallel to an engine axis of rotation and a line connecting the leading edge and the trailing edge that is less than about 15°.
    Type: Application
    Filed: January 15, 2018
    Publication date: June 7, 2018
    Inventors: Edward J. Gallagher, Glen E. Potter, Barry M. Ford
  • Patent number: 9988908
    Abstract: A gas turbine engine include a combustor section arranged between a compressor section and a turbine section. A fan section has multiple fan blades. A geared architecture couples the fan section to the turbine section or compressor section. The fan blades include an airfoil that has pressure and suction sides. The airfoil extends in a radial direction from a 0% span position at an inner flow path location to a 100% span position at an airfoil tip. The airfoil has a relationship between a trailing edge dihedral and a span position. The trailing edge dihedral positive from the 0% span position to the 100% span position. A positive dihedral corresponds to suction side-leaning and a negative dihedral corresponds to pressure side-leaning.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: June 5, 2018
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventors: Edward J. Gallagher, Byron R. Monzon, Ling Liu, Linda S. Li, Darryl Whitlow, Barry M. Ford
  • Publication number: 20180016912
    Abstract: A gas turbine engine include a combustor section arranged between a compressor section and a turbine section. A fan section has multiple fan blades. A geared architecture couples the fan section to the turbine section or compressor section. The fan blades include an airfoil that has pressure and suction sides. The airfoil extends in a radial direction from a 0% span position at an inner flow path location to a 100% span position at an airfoil tip. The airfoil has a relationship between a trailing edge dihedral and a span position. The trailing edge dihedral positive from the 0% span position to the 100% span position. A positive dihedral corresponds to suction side-leaning and a negative dihedral corresponds to pressure side-leaning.
    Type: Application
    Filed: September 15, 2017
    Publication date: January 18, 2018
    Inventors: Edward J. Gallagher, Byron R. Monzon, Ling Liu, Linda S. Li, Darryl Whitlow, Barry M. Ford
  • Patent number: 9869191
    Abstract: A fan exit guide vane assembly for a gas turbine engine includes a plurality of guide vanes having a pressure side and a suction side extending between a leading edge and a trailing edge. The vanes further include a span extending between a root and tip with a stagger angle defined as an angle between a longitudinal axis parallel to an engine axis of rotation and a line connecting the leading edge and the trailing edge that is less than about 15°.
    Type: Grant
    Filed: April 17, 2013
    Date of Patent: January 16, 2018
    Assignee: United Technologies Corporation
    Inventors: Edward J. Gallagher, Glen E. Potter, Barry M. Ford
  • Patent number: 9777580
    Abstract: An airfoil for a turbine engine includes an airfoil that has pressure and suction sides that extend in a radial direction from a 0% span position at an inner flow path location to a 100% span position at an airfoil tip. The airfoil has a relationship between a leading edge dihedral and a span position. The leading edge dihedral is negative from the 0% span position to the 100% span position. A positive dihedral corresponds to suction side-leaning, and a negative dihedral corresponds to pressure side-leaning. The airfoil has a relationship between a trailing edge dihedral and a span position. The trailing edge dihedral is positive from the 0% span position to the 100% span position. A positive dihedral corresponds to suction side-leaning and a negative dihedral corresponds to pressure side-leaning.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: October 3, 2017
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventors: Edward J. Gallagher, Byron R. Monzon, Ling Liu, Linda S. Li, Darryl Whitlow, Barry M. Ford
  • Publication number: 20170241268
    Abstract: An airfoil for a turbine engine includes pressure and suction sides extending in a radial direction from a 0% span position at an inner flow path location to a 100% span position at an airfoil tip. The airfoil has a relationship between an axial leading edge location and a span position that is at least a third order polynomial with a generally U-shaped curve having an initial negative slope followed by a positive slope. The positive slope leans aftward and the negative slope leans forward. The curve has a critical point in the range of 30-50% span position at which the curve changes from the negative slope to the positive slope. The curve is generally linear from 55% span to 75% span and has a positive slope that increases at a rate of about 0.0875 inch (2.22 mm) per 1% span, +/?0.04 inch (1.01 mm) per 1% span.
    Type: Application
    Filed: August 22, 2014
    Publication date: August 24, 2017
    Inventors: Edward J. Gallagher, Byron R. Monzon, Ling Liu, Linda S. Li, Darryl Whitlow, Barry M. Ford