Patents by Inventor Barry Snyder

Barry Snyder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11945964
    Abstract: A system for applying a first coating composition and a second coating composition is provided herein. The system includes an atomizing applicator and a high transfer efficiency applicator defining a nozzle orifice. The system further includes a substrate assembly comprising a metal-containing substrate and a plastic-containing substrate. The metal-containing substrate is coupled to the plastic-containing substrate. The atomizing applicator is configured to apply the first coating composition to the metal-containing substrate. The high transfer efficiency applicator is configured to expel the second coating composition through the second nozzle orifice to the plastic-containing substrate.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: April 2, 2024
    Assignee: AXALTA COATING SYSTEMS IP CO., LLC
    Inventors: John R. Moore, Michael R. Koerner, Christian Jackson, Bradley A. Jacobs, Shih-Wa Wang, Matthew Irwin, Matthew Boland, Joanne Hardy, Daniel Naugle, Kevin O'Connor, Barry Snyder
  • Publication number: 20230227691
    Abstract: A method of applying a coating composition to a substrate utilizing a high transfer efficiency applicator include the steps of providing the high transfer efficiency applicator comprising an array of nozzles wherein each nozzle defines a nozzle orifice having a diameter of from 0.00002 m to 0.0004, providing the coating composition, and applying the coating composition to the substrate through the nozzle orifice without atomization such that at least 99.9% of the applied coating composition contacts the substrate to form a coating layer having a wet thickness of at least 5 microns, wherein the coating composition includes a carrier, a binder, and a radar reflective pigment or a LiDAR reflective pigment. The coating composition has an Ohnesorge number (Oh) of from about 0.01 to about 12.6, a Reynolds number (Re) of from about 0.02 to about 6,200, and a Deborah number (De) of from greater than 0 to about 1730.
    Type: Application
    Filed: March 27, 2023
    Publication date: July 20, 2023
    Applicant: AXALTA COATING SYSTEMS GMBH
    Inventors: John R. Moore, Michael R. Koerner, Christian Jackson, Bradley A. Jacobs, Shih-Wa Wang, Matthew Irwin, Matthew Boland, Joanne Hardy, Daniel Naugle, Kevin O’Connor, Barry Snyder
  • Patent number: 11649373
    Abstract: A coating composition for application to a substrate utilizing a high transfer efficiency applicator is provided herein. The coating composition includes monomeric, oligomeric, or polymeric compounds having a number average molecular weight of from about 400 to about 20,000 and having a free-radically polymerizable double bond. The coating composition further includes a photo initiator. The coating composition has an Ohnesorge number (Oh) of from about 0.01 to about 12.6. The coating composition has a Reynolds number (Re) of from about 0.02 to about 6,200. The coating composition has a Deborah number (De) of from greater than 0 to about 1730.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: May 16, 2023
    Assignee: AXALTA COATING SYSTEMS IP CO., LLC
    Inventors: John R. Moore, Michael R. Koerner, Christian Jackson, Bradley A. Jacobs, Shih-Wa Wang, Matthew Irwin, Matthew Boland, Joanne Hardy, Daniel Naugle, Kevin O'Connor, Barry Snyder
  • Patent number: 11649374
    Abstract: A system for applying a coating composition to a substrate utilizing a high transfer efficiency applicator is provided herein. The system includes a storage device for storing instructions for performing a matching protocol, and one or more data processors configured to execute the instructions to, receive, by one or more data processors, target image data of a target coating, the target image data generated by an electronic imaging device, and apply the target image data to a matching protocol to generate application instructions. The system further includes a high transfer efficiency applicator defining a nozzle orifice. The high transfer efficiency applicator is configured to expel the coating composition through the nozzle orifice to the substrate to form a coating layer. The high transfer efficiency applicator is configured expel the coating composition based on the application instructions.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: May 16, 2023
    Assignee: AXALTA COATING SYSTEMS IP CO., LLC
    Inventors: John R. Moore, Michael R. Koerner, Christian Jackson, Bradley A. Jacobs, Shih-Wa Wang, Matthew Irwin, Barry Snyder, Larry Steenhoek
  • Patent number: 11649372
    Abstract: A coating composition for application to a substrate utilizing a high transfer efficiency applicator. The coating composition includes a carrier and a binder comprising an elastomeric resin in an amount of at least 50 weight %, wherein the elastomeric resin has an Elongation to Break of at least 500% according to DIN 53 504. The coating composition has an Ohnesorge number (Oh) of from about 0.01 to about 12.6. The coating composition has a Reynolds number (Re) of from about 0.02 to about 6,200. The coating composition has a Deborah number (De) of from greater than 0 to about 1730.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: May 16, 2023
    Assignee: AXALTA COATING SYSTEMS IP CO., LLC
    Inventors: John R. Moore, Michael R. Koerner, Christian Jackson, Bradley A. Jacobs, Shih-Wa Wang, Matthew Irwin, Matthew Boland, Joanne Hardy, Daniel Naugle, Kevin O'Connor, Barry Snyder
  • Patent number: 11566146
    Abstract: A coating composition for application to a substrate utilizing a high transfer efficiency applicator is provided herein. The coating composition includes monomeric, oligomeric, or polymeric compounds having a number average molecular weight of from about 400 to about 20,000 and having a free-radically polymerizable double bond. The coating composition further includes a photo initiator. The coating composition has an Ohnesorge number (Oh) of from about 0.01 to about 12.6. The coating composition has a Reynolds number (Re) of from about 0.02 to about 6,200. The coating composition has a Deborah number (De) of from greater than 0 to about 1730.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: January 31, 2023
    Assignee: AXALTA COATING SYSTEMS IP CO., LLC
    Inventors: John R. Moore, Michael R. Koerner, Christian Jackson, Bradley A. Jacobs, Shih-Wa Wang, Matthew Irwin, Matthew Boland, Joanne Hardy, Daniel Naugle, Kevin O'Connor, Barry Snyder
  • Publication number: 20220002581
    Abstract: A coating composition for application to a substrate utilizing a high transfer efficiency applicator. The coating composition includes a carrier, a binder, a corrosion inhibiting pigment. The coating composition has an Ohnesorge number (Oh) of from about 0.01 to about 12.6. The coating composition has a Reynolds number (Re) of from about 0.02 to about 6,200. The coating composition has a Deborah number (De) of from greater than 0 to about 1730.
    Type: Application
    Filed: September 15, 2021
    Publication date: January 6, 2022
    Applicant: AXALTA COATING SYSTEMS IP CO., LLC
    Inventors: John R. Moore, Michael R. Koerner, Christian Jackson, Bradley A. Jacobs, Shih-Wa Wang, Matthew Irwin, Matthew Boland, Joanne Hardy, Daniel Naugle, Kevin O'Connor, Barry Snyder
  • Publication number: 20210189150
    Abstract: A coating composition for application to a substrate utilizing a high transfer efficiency applicator. The coating composition includes a carrier, a binder, a corrosion inhibiting pigment. The coating composition has an Ohnesorge number (Oh) of from about 0.01 to about 12.6. The coating composition has a Reynolds number (Re) of from about 0.02 to about 6,200. The coating composition has a Deborah number (De) of from greater than 0 to about 1730.
    Type: Application
    Filed: November 30, 2018
    Publication date: June 24, 2021
    Applicant: AXALTA COATING SYSTEMS GMBH
    Inventors: John R. Moore, Michael R. Koerner, Christian Jackson, Bradley A. Jacobs, Shih-Wa Wang, Matthew Irwin, Matthew Boland, Joanne Hardy, Daniel Naugle, Kevin O'Connor, Barry Snyder
  • Publication number: 20210189172
    Abstract: A coating composition for application to a substrate utilizing a high transfer efficiency applicator is provided herein. The coating composition includes a carrier, a binder, and a radar reflective pigment or a LiDAR reflective pigment. The coating composition has an Ohnesorge number (Oh) of from about 0.01 to about 12.6. The coating composition has a Reynolds number (Re) of from about 0.02 to about 6,200. The coating composition has a Deborah number (De) of from greater than 0 to about 1730.
    Type: Application
    Filed: November 30, 2018
    Publication date: June 24, 2021
    Applicant: AXALTA COATING SYSTEMS GMBH
    Inventors: John R. Moore, Michael R. Koerner, Christian Jackson, Bradley A. Jacobs, Shih-Wa Wang, Matthew Irwin, Matthew Boland, Joanne Hardy, Daniel Naugle, Kevin O'Connor, Barry Snyder
  • Publication number: 20210170435
    Abstract: A system for applying a first coating composition and a second coating composition is provided herein. The system includes an atomizing applicator and a high transfer efficiency applicator defining a nozzle orifice. The system further includes a substrate assembly comprising a metal-containing substrate and a plastic-containing substrate. The metal-containing substrate is coupled to the plastic-containing substrate. The atomizing applicator is configured to apply the first coating composition to the metal-containing substrate. The high transfer efficiency applicator is configured to expel the second coating composition through the second nozzle orifice to the plastic-containing substrate.
    Type: Application
    Filed: November 30, 2018
    Publication date: June 10, 2021
    Applicant: AXALTA COATING SYSTEMS GMBH
    Inventors: John R. Moore, Michael R. Koerner, Christian Jackson, Bradley A. Jacobs, Shih-Wa Wang, Matthew Irwin, Matthew Boland, Joanne Hardy, Daniel Naugle, Kevin O'Connor, Barry Snyder
  • Publication number: 20210171795
    Abstract: A coating composition for application to a substrate utilizing a high transfer efficiency applicator. The coating composition includes a carrier and a binder comprising an elastomeric resin in an amount of at least 50 weight %, wherein the elastomeric resin has an Elongation to Break of at least 500% according to DIN 53 504. The coating composition has an Ohnesorge number (Oh) of from about 0.01 to about 12.6. The coating composition has a Reynolds number (Re) of from about 0.02 to about 6,200. The coating composition has a Deborah number (De) of from greater than 0 to about 1730.
    Type: Application
    Filed: November 30, 2018
    Publication date: June 10, 2021
    Applicant: AXALTA COATING SYSTEMS GMBH
    Inventors: John R. Moore, Michael R. Koerner, Christian Jackson, Bradley A. Jacobs, Shih-Wa Wang, Matthew Irwin, Matthew Boland, Joanne Hardy, Daniel Naugle, Kevin O'Connor, Barry Snyder
  • Publication number: 20210171796
    Abstract: A coating composition for application to a substrate utilizing a high transfer efficiency applicator is provided herein. The coating composition includes monomeric, oligomeric, or polymeric compounds having a number average molecular weight of from about 400 to about 20,000 and having a free-radically polymerizable double bond. The coating composition further includes a photo initiator. The coating composition has an Ohnesorge number (Oh) of from about 0.01 to about 12.6. The coating composition has a Reynolds number (Re) of from about 0.02 to about 6,200. The coating composition has a Deborah number (De) of from greater than 0 to about 1730.
    Type: Application
    Filed: November 30, 2018
    Publication date: June 10, 2021
    Applicant: AXALTA COATING SYSTEMS GMBH
    Inventors: John R. Moore, Michael R. Koerner, Christian Jackson, Bradley A. Jacobs, Shih-Wa Wang, Matthew Irwin, Matthew Boland, Joanne Hardy, Daniel Naugle, Kevin O'Connor, Barry Snyder
  • Publication number: 20200360963
    Abstract: A system for applying a coating composition to a substrate utilizing a high transfer efficiency applicator is provided herein. The system includes a storage device for storing instructions for performing a matching protocol, and one or more data processors configured to execute the instructions to, receive, by one or more data processors, target image data of a target coating, the target image data generated by an electronic imaging device, and apply the target image data to a matching protocol to generate application instructions. The system further includes a high transfer efficiency applicator defining a nozzle orifice. The high transfer efficiency applicator is configured to expel the coating composition through the nozzle orifice to the substrate to form a coating layer. The high transfer efficiency applicator is configured expel the coating composition based on the application instructions.
    Type: Application
    Filed: November 30, 2018
    Publication date: November 19, 2020
    Applicant: AXALTA COATING SYSTEMS GMBH
    Inventors: John R. Moore, Michael R. Koerner, Christian Jackson, Bradley A. Jacobs, Shih-Wa Wang, Matthew Irwin, Barry Snyder, Larry Steenhoek
  • Publication number: 20120329353
    Abstract: A hot melt adhesive composition that includes a non functionalized metallocene catalyzed polymer and a second polymer selected from the group including amorphous poly alpha olefins, uni-modal metallocene catalyzed polymers, hydrogenated styrenic block copolymers and combinations thereof and nonwoven and packaging articles including the same.
    Type: Application
    Filed: June 27, 2011
    Publication date: December 27, 2012
    Applicant: H.B. Fuller Company
    Inventors: Kevin Davis, Timothy W. Roska, Barry Snyder
  • Publication number: 20060213957
    Abstract: A wetting zone is defined within a substrate. A conductive material is applied to the wetting zone. A conductive trace is at least partially formed within the wetting zone from the conductive material flowing throughout the wetting zone by wicking action.
    Type: Application
    Filed: March 26, 2005
    Publication date: September 28, 2006
    Inventors: Cary Addington, Leo Clarke, Chris Aschoff, Barry Snyder
  • Publication number: 20060093787
    Abstract: An electronic device comprises a substrate comprising a first surface and a second surface, a substrate carrier comprising a first surface and a second surface, and an inorganic material bonding the second surface of the substrate and the second surface of the substrate carrier.
    Type: Application
    Filed: October 29, 2004
    Publication date: May 4, 2006
    Inventors: Chien-Hua Chen, Barry Snyder, Ronald Hellekson
  • Publication number: 20050101040
    Abstract: A method of manufacturing a microelectronics device is provided, wherein the microelectronics device is formed on a substrate having a frontside and a backside. The method comprises forming a circuit element on the frontside of the substrate from a plurality of layers deposited on the frontside of the substrate, wherein the plurality of layers includes an intermediate electrical contact layer, and forming an interconnect structure after forming the electrical contact layer. The interconnect structure includes a contact pad formed on the backside of the substrate, and a through-substrate interconnect in electrical communication with the contact pad, wherein the through-substrate interconnect extends from the backside of the substrate to the electrical contact layer.
    Type: Application
    Filed: December 14, 2004
    Publication date: May 12, 2005
    Inventors: Daine Lai, Samson Berhane, Barry Snyder, Ronald Hellekson, Hubert Plas