Patents by Inventor Bart KLEIN

Bart KLEIN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240141336
    Abstract: RNA editing is achieved using oligonucleotide constructs comprising (i) a targeting portion specific for a target nucleic acid sequence to be edited and (ii) a recruiting portion capable of binding and recruiting a nucleic acid editing entity naturally present in the cell. The nucleic acid editing entity, such as ADAR, is redirected to a preselected target site by means of the targeting portion, thereby promoting editing of preselected nucleotide residues in a region of the target RNA which corresponds to the targeting portion.
    Type: Application
    Filed: June 8, 2023
    Publication date: May 2, 2024
    Applicant: ProQR Therapeutics II B.V.
    Inventors: Bart KLEIN, Gerardus Johannes PLATENBURG
  • Publication number: 20240132890
    Abstract: The invention relates to nucleic acid molecules for pseudouridylation of a target uridine in a target RNA in a mammalian cell, wherein the nucleic acid molecule comprises a guide region capable of forming a partially double stranded nucleic acid complex with the target RNA comprising the target uridine, wherein the partially double stranded nucleic acid complex is capable of engaging a mammalian pseudouridylation enzyme, wherein the guide region assists in positioning the target uridine in the partially double stranded nucleic acid complex for it to be converted to a pseudouridine by the mammalian pseudouridylation enzyme.
    Type: Application
    Filed: September 27, 2023
    Publication date: April 25, 2024
    Applicants: University of Rochester, ProQR Therapeutics II B.V.
    Inventors: Bart KLEIN, Janne Juha TURUNEN, Lenka VAN SINT FIET, Pedro Duarte Morais Fernandes Arantes DA SILVA, Julien Auguste Germain BOUDET, Yi-Tao YU, Hironori ADACHI, Meemanage De ZOYSA
  • Patent number: 11866702
    Abstract: The invention relates to nucleic acid molecules for pseudouridylation of a target uridine in a target RNA in a mammalian cell, wherein the nucleic acid molecule comprises a guide region capable of forming a partially double stranded nucleic acid complex with the target RNA comprising the target uridine, wherein the partially double stranded nucleic acid complex is capable of engaging a mammalian pseudouridylation enzyme, wherein the guide region assists in positioning the target uridine in the partially double stranded nucleic acid complex for it to be converted to a pseudouridine by the mammalian pseudouridylation enzyme.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: January 9, 2024
    Assignees: University of Rochester, ProQR Therapeutics II B.V.
    Inventors: Bart Klein, Janne Juha Turunen, Lenka Van Sint Fiet, Pedro Duarte Morais Fernandes Arantes Da Silva, Julien Auguste Germain Boudet, Yi-Tao Yu, Hironori Adachi, Meemanage De Zoysa
  • Patent number: 11851656
    Abstract: The invention relates to antisense oligonucleotides that are capable of bringing about specific editing of a target nucleotide (adenosine) in a target RNA sequence in a eukaryotic cell, wherein said oligonucleotide does not, in itself, form an intramolecular hairpin or stem-loop structure, and wherein said oligonucleotide comprises a non-complementary nucleotide in a position opposite to the nucleotide to be edited in the target RNA sequence.
    Type: Grant
    Filed: January 20, 2021
    Date of Patent: December 26, 2023
    Assignee: ProQR Therapeutics II B.V.
    Inventors: Janne Juha Turunen, Antti Aalto, Bart Klein, Lenka Van Sint Fiet, Julien Auguste Germain Boudet
  • Patent number: 11781134
    Abstract: RNA editing is achieved using oligonucleotide constructs comprising (i) a targeting portion specific for a target nucleic acid sequence to be edited and (ii) a recruiting portion capable of binding and recruiting a nucleic acid editing entity naturally present in the cell. The nucleic acid editing entity, such as ADAR, is redirected to a preselected target site by means of the targeting portion, thereby promoting editing of preselected nucleotide residues in a region of the target RNA which corresponds to the targeting portion.
    Type: Grant
    Filed: March 3, 2020
    Date of Patent: October 10, 2023
    Assignee: ProQR Therapeutics II B.V.
    Inventors: Bart Klein, Gerardus Johannes Platenburg
  • Publication number: 20230279392
    Abstract: The invention relates to antisense oligonucleotide that are capable of bringing about specific editing of a target nucleotide (adenosine) in a target RNA in a eukaryotic cell, wherein said oligonucleotide does not, in itself, form an intramolecular hairpin or stem-loop structure, and wherein said oligonucleotide comprises a cytidine (a non-complementary nucleotide) or a uridine in a position opposite to the target adenosine to be edited in the target RNA region.
    Type: Application
    Filed: April 6, 2023
    Publication date: September 7, 2023
    Applicant: ProQR Therapeutics II B.V.
    Inventors: Janne Juha TURUNEN, Petra Geziena DE BRUIJN, Bart KLEIN, Roxana Simona REDIS, Lenka VAN SINT FIET
  • Patent number: 11649454
    Abstract: The invention relates to antisense oligonucleotides that are capable of bringing about specific editing of a target nucleotide (adenosine) in a target RNA in a eukaryotic cell, wherein said oligonucleotide does not, in itself, form an intramolecular hairpin or stem-loop structure, and wherein said oligonucleotide comprises a cytidine (a non-complementary nucleotide) or a uridine in a position opposite to the target adenosine to be edited in the target RNA region.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: May 16, 2023
    Assignee: ProQR Therapeutics II B.V.
    Inventors: Janne Juha Turunen, Petra Geziena De Bruijn, Bart Klein, Roxana Simona Redis, Lenka Van Sint Fiet
  • Publication number: 20220340900
    Abstract: The invention relates to single-stranded RNA editing antisense oligonucleotides (AONs) for binding to a target RNA molecule for deaminating a target nucleotide, preferably an adenosine, present in the target RNA molecule and recruiting, in a cell, preferably a human cell, an enzyme with nucleotide deamination activity, preferably an ADAR enzyme, to deaminate the target nucleotide in the target RNA molecule. The AONs carry at least one methylphosphonate-modified internucleosidic linkage on a position that would render the AON more stable in comparison to an AON not carrying that methylphosphonate modification at that position.
    Type: Application
    Filed: April 2, 2020
    Publication date: October 27, 2022
    Inventors: Janne Juha Turunen, Bart Klein, Lenka Van Sint Fiet, Antti Aalto, Cherie Paige Kemmel, Tess Hoogeboom, Lisanne Alieda Van Wissen
  • Publication number: 20210340529
    Abstract: The invention relates to antisense oligonucleotides that are capable of bringing about specific editing of a target nucleotide (adenosine) in a target RNA in a eukaryotic cell, wherein said oligonucleotide does not, in itself, form an intramolecular hairpin or stem-loop structure, and wherein said oligonucleotide comprises a cytidine non-complementary, nucleotide) or a uridine in a position opposite to the target adenosine to be edited in the target RNA region.
    Type: Application
    Filed: March 26, 2021
    Publication date: November 4, 2021
    Inventors: Janne Juha Turunen, Petra Geziena De Bruijn, Bart Klein, Roxana Simona Redis, Lenka Van Sint Fiet
  • Publication number: 20210238597
    Abstract: The invention relates to antisense oligonucleotides that are capable of bringing about specific editing of a target nucleotide (adenosine) in a target RNA sequence in a eukaryotic cell, wherein said oligonucleotide does not, in itself, form an intramolecular hairpin or stem-loop structure, and wherein said oligonucleotide comprises a non-complementary nucleotide in a position opposite to the nucleotide to be edited in the target RNA sequence.
    Type: Application
    Filed: January 20, 2021
    Publication date: August 5, 2021
    Inventors: Janne Juha Turunen, Antti Aalto, Bart Klein, Lenka Van Sint Fiet, Julien Auguste Germain Boudet
  • Patent number: 10988763
    Abstract: The invention relates to antisense oligonucleotides that are capable of bringing about specific editing of a target nucleotide (adenosine) in a target RNA in a eukaryotic cell, wherein said oligonucleotide does not, in itself, form an intramolecular hairpin or stem-loop structure, and wherein said oligonucleotide comprises a cytidine (a non-complementary nucleotide) or a uridine in position opposite to the target adenosine to be edited in the target RNA region.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: April 27, 2021
    Assignee: PROQR THERAPEUTICS II B.V.
    Inventors: Janne Juha Turunen, Petra Geziena De Bruijn, Bart Klein, Roxana Simona Redis, Lenka Van Sint Fiet
  • Patent number: 10941402
    Abstract: The invention relates to antisense oligonucleotides that are capable of bringing about specific editing of a target nucleotide (adenosine) in a target RNA sequence in a eukaryotic cell, wherein said oligonucleotide does not, in itself, form an intramolecular hairpin or stem-loop structure, and wherein said oligonucleotide comprises a non-complementary nucleotide in a position opposite to the nucleotide to be edited in the target RNA sequence.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: March 9, 2021
    Assignee: PROQR THERAPEUTICS II B.V.
    Inventors: Janne Juha Turunen, Antti Aalto, Bart Klein, Lenka Van Sint Fiet, Julien Auguste Germain Boudet
  • Publication number: 20210010002
    Abstract: The invention relates to nucleic acid molecules for pseudouridylation of a target uridine in a target RNA in a mammalian cell, wherein the nucleic acid molecule comprises a guide region capable of forming a partially double stranded nucleic acid complex with the target RNA comprising the target uridine, wherein the partially double stranded nucleic acid complex is capable of engaging a mammalian pseudouridylation enzyme, wherein the guide region assists in positioning the target uridine in the partially double stranded nucleic acid complex for it to be converted to a pseudouridine by the mammalian pseudouridylation enzyme.
    Type: Application
    Filed: March 27, 2019
    Publication date: January 14, 2021
    Inventors: Bart Klein, Janne Juha Turunen, Lenka Van Sint Fiet, Pedro Duarte Morais Fernandes Arantes Da Silva, Julien Auguste Germain Boudet, Yi-Tao Yu, Hironori Adachi, Meemanage De Zoysa
  • Publication number: 20200199586
    Abstract: RNA editing is achieved using oligonucleotide constructs comprising (i) a targeting portion specific for a target nucleic acid sequence to be edited and (ii) a recruiting portion capable of binding and recruiting a nucleic acid editing entity naturally present in the cell. The nucleic acid editing entity, such as ADAR, is redirected to a preselected target site by means of the targeting portion, thereby promoting editing of preselected nucleotide residues in a region of the target RNA which corresponds to the targeting portion.
    Type: Application
    Filed: March 3, 2020
    Publication date: June 25, 2020
    Inventors: Bart Klein, Gerardus Johannes Platenburg
  • Patent number: 10676737
    Abstract: RNA editing is achieved using oligonucleotide constructs comprising (i) a targeting portion specific for a target nucleic acid sequence to be edited and (ii) a recruiting portion capable of binding and recruiting a nucleic acid editing entity naturally present in the cell. The nucleic acid editing entity, such as ADAR, is redirected to a preselected target site by means of the targeting portion, thereby promoting editing of preselected nucleotide residues in a region of the target RNA which corresponds to the targeting portion.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: June 9, 2020
    Assignee: ProQR Therapeutics II B.V.
    Inventors: Bart Klein, Gerardus Johannes Platenburg
  • Publication number: 20190330622
    Abstract: The invention relates to antisense oligonucleotides that are capable of bringing about specific editing of a target nucleotide (adenosine) in a target RNA in a eukaryotic cell, wherein said oligonucleotide does not, in itself, form an intramolecular hairpin or stem-loop structure, and wherein said oligonucleotide comprises a cytidine (a non-complementary nucleotide) or a uridine in position opposite to the target adenosine to be edited in the target RNA region.
    Type: Application
    Filed: June 22, 2017
    Publication date: October 31, 2019
    Inventors: Janne Juha Turunen, Petra Geziena De Bruijn, Bart Klein, Roxana Simona Redis, Lenka Van Sint Fiet
  • Publication number: 20190218552
    Abstract: The invention relates to antisense oligonucleotides that are capable of bringing about specific editing of a target nucleotide (adenosine) in a target RNA sequence in a eukaryotic cell, wherein said oligonucleotide does not, in itself, form an intramolecular hairpin or stem-loop structure, and wherein said oligonucleotide comprises a non-complementary nucleotide in a position opposite to the nucleotide to be edited in the target RNA sequence.
    Type: Application
    Filed: August 31, 2017
    Publication date: July 18, 2019
    Inventors: Janne Juha Turunen, Antti Aalto, Bart Klein, Lenka Van Sint Fiet, Julien Auguste Germain Boudet
  • Publication number: 20190040383
    Abstract: RNA editing is achieved using oligonucleotide constructs comprising (i) a targeting portion specific for a target nucleic acid sequence to be edited and (ii) a recruiting portion capable of binding and recruiting a nucleic acid editing entity naturally present in the cell. The nucleic acid editing entity, such as ADAR, is redirected to a preselected target site by means of the targeting portion, thereby promoting editing of preselected nucleotide residues in a region of the target RNA which corresponds to the targeting portion.
    Type: Application
    Filed: December 17, 2015
    Publication date: February 7, 2019
    Inventors: Bart Klein, Gerardus Johannes Platenburg
  • Publication number: 20160228339
    Abstract: Mouth hygiene compositions that reduce VSC by changing the growth conditions in the oral cavity in favor of bacteria capable of anaerobic respiration. Anaerobic respiration is a form of respiration that involves electron acceptors other than oxygen. Examples of such alternative electron acceptors are sulfates, nitrates, sulfur and fumarate. A shift towards anaerobic respirational growth of the microflora in the oral cavity is brought about using an oral hygiene composition that is rich in nitrates. Such a composition considerably reduces the production of VSC compounds, especially hydrogen sulfide. Moreover, it has been established that by using these oral hygiene compositions, the overall diversity of the mouth flora is not diminished, but rather shifted from an halitotic (strictly anaerobically growing) bacterial population to a less halitotic one. The compositions are suitably used to treat and/or prevent halitosis in mammals.
    Type: Application
    Filed: September 18, 2014
    Publication date: August 11, 2016
    Inventors: Willem CRIELAARD, Martijn BRUGMAN, Ronald Hendrik Pieter BRUS, Bart KLEIN