Patents by Inventor Bartley P. Griffith

Bartley P. Griffith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10912920
    Abstract: Disclosed is a self-expanding cannula, systems using such cannulae, and methods of their use. The cannulae may comprise single lumen cannula (SLC) configurations and double lumen cannula (DLC) configurations, and include at least a first cannula and a self-expanding wire frame attached to the first cannula. Self-expanding wire frame is automatically expandable from a compressed state (providing a reduced cannula diameter as it is moved through a patients body to the site at which it is to be deployed) to an expanded state (which increases the diameter of the cannula to the diameter intended for its normal use). The expanded wire frame provides radial support to prevent a drainage canal (whether a patients blood vessel or a portion of the system inserted into the patients blood vessel) from collapsing as fluid is drained from the patient.
    Type: Grant
    Filed: July 17, 2014
    Date of Patent: February 9, 2021
    Assignees: University of Maryland, Baltimore, University of Maryland, Baltimore County
    Inventors: Zhongjun Wu, Bartley P. Griffith, Jun Ding
  • Publication number: 20200405944
    Abstract: The present invention discloses a self-sealing cannula and methods of its use. The self-sealing cannula can be minimally invasively placed into the heart for drawing and/or returning blood with a self-sealing function at the interface of the blood access site. The disclosed cannula can be implemented as a single lumen cannula or a double lumen cannula, which can be used with ventricular assist devices for heart support or pump-oxygenators for ECMO and respiratory support. Through a self-sealing mechanism fixed on the ventricular wall or atrial wall, a cannula body is attached to the self-sealing fixture and blood is drawn into the lumen via an external pump and returned to the circulation system through a separate cannula. In the case of the double lumen cannula embodiment, the blood will be drawn into the drainage lumen of the double lumen cannula and returned through an infusion lumen at the desired location.
    Type: Application
    Filed: June 3, 2020
    Publication date: December 31, 2020
    Inventors: Zhongjun WU, Bartley P. GRIFFITH, Keshava RAJAGOPAL
  • Publication number: 20200206404
    Abstract: The device of the present invention includes a dual chamber gas exchanger that is configured for increased flexibility and scalability for many clinical applications. The dual chamber oxygenator can be configured and used in various applications, such as in a heart-lung machine for cardiopulmonary support during cardiothoracic surgery, in an extracorporeal membrane oxygenation (ECMO) circuitry, as a respiratory assist device for patients with lung failure, and the like. The dual chamber gas exchanger features two sweep gas flow paths and two gas exchange membrane bundles enclosed in a housing structure with various blood flow distribution and gas distribution mechanisms. The gas exchanger includes an outer housing, an intermediate housing, two gas exchange fiber bundles, a blood inlet, a blood outlet, two gas inlets, two gas outlets, two gas distribution chambers and an optional heat exchanger.
    Type: Application
    Filed: February 14, 2020
    Publication date: July 2, 2020
    Inventors: Zhongjun WU, Bartley P. GRIFFITH, Jiafeng ZHANG, Steven J. ORWIG
  • Patent number: 10695483
    Abstract: The present invention discloses a self-sealing cannula that through a self-sealing mechanism fixed on the ventricular wall or atrial wall, the cannula body is attached to the self-sealing fixture and blood is drawn into the lumen via an external pump and returned to the circulation system through a separate cannula; in the case of the double lumen cannula embodiment, the blood will be drawn into the drainage lumen of the double lumen cannula and returned through an infusion lumen at the desired location.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: June 30, 2020
    Assignee: University of Maryland, Baltimore
    Inventors: Zhongjun Wu, Bartley P. Griffith, Keshava Rajagopal
  • Publication number: 20190224456
    Abstract: Disclosed herein is a guidewire configured for placement of large bore catheters and cannulae inside of a patient's blood vessels without fluoroscopic guidance. The guidewire, in accordance with certain aspects of an embodiment of the invention, comprises sections of varying stiffness throughout optimally fixed length portions of the guidewire that particularly ease placement of such large bore catheters and cannulae in ECMO applications.
    Type: Application
    Filed: January 24, 2019
    Publication date: July 25, 2019
    Inventors: Zachary Kon, Bartley P. Griffith, Mehrdad Ghoreishi, Chetan Pasrija, Gregory Bittle
  • Publication number: 20190209761
    Abstract: A blood oxygenator is disclosed comprising a housing, a blood inlet, a blood outlet, a spiral volute, a gas inlet, an oxygenator fiber bundle, and a gas outlet. The housing encloses the fiber bundle and provides the structure for the blood flow path and connectors. The fiber bundle comprises gas-exchange membranes which transfer oxygen to the blood and remove carbon dioxide when the blood flows across the membranes. The spiral volute guides the blood to flow through the fiber bundle. A gas flow chamber receives sweep gas containing oxygen and distributes the sweep gas into the fiber membranes, which gas is then exchanged with the blood being oxygenated.
    Type: Application
    Filed: December 17, 2018
    Publication date: July 11, 2019
    Inventors: Zhongjun WU, Bartley P. GRIFFITH
  • Patent number: 10258729
    Abstract: A method for pumping and oxygenating blood includes receiving a flow of gas including oxygen into a gas inlet manifold via a gas inlet. The flow of gas is passed through the hollow fibers from the gas inlet manifold to a gas outlet manifold. The flow of gas is output from the gas outlet manifold via a gas outlet. An impeller is rotated to generate a flow of blood that flows over the hollow fibers. Oxygen from the flow of gas is transferred to the flow of blood through the hollow fibers. Carbon dioxide is transferred from the flow of blood to the flow of gas through the hollow fibers.
    Type: Grant
    Filed: January 28, 2016
    Date of Patent: April 16, 2019
    Assignees: Thoratec LLC, University of Maryland, Baltimore
    Inventors: Barry N. Gellman, Andrew Koert, Zhongjun Wu, Juntao Zhang, Bartley P. Griffith
  • Patent number: 10188780
    Abstract: A blood oxygenator is disclosed comprising a housing, a blood inlet, a blood outlet, a spiral volute, a gas inlet, an oxygenator fiber bundle, and a gas outlet. The housing encloses the fiber bundle and provides the structure for the blood flow path and connectors. The fiber bundle comprises gas-exchange membranes which transfer oxygen to the blood and remove carbon dioxide when the blood flows across the membranes. The spiral volute guides the blood to flow through the fiber bundle. A gas flow chamber receives sweep gas containing oxygen and distributes the sweep gas into the fiber membranes, which gas is then exchanged with the blood being oxygenated.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: January 29, 2019
    Assignee: University of Maryland, Baltimore
    Inventors: Zhongjun Wu, Bartley P. Griffith
  • Publication number: 20170303958
    Abstract: The present invention discloses a self-sealing cannula and methods of its use. The self-sealing cannula can be minimally invasively placed into the heart for drawing and/or returning blood with a self-sealing function at the interface of the blood access site. The disclosed cannula can be implemented as a single lumen cannula or a double lumen cannula, which can be used with ventricular assist devices for heart support or pump-oxygenators for ECMO and respiratory support. Through a self-sealing mechanism fixed on the ventricular wall or atrial wall, a cannula body is attached to the self-sealing fixture and blood is drawn into the lumen via an external pump and returned to the circulation system through a separate cannula. In the case of the double lumen cannula embodiment, the blood will be drawn into the drainage lumen of the double lumen cannula and returned through an infusion lumen at the desired location.
    Type: Application
    Filed: November 11, 2015
    Publication date: October 26, 2017
    Inventors: Zhongjun WU, Bartley P. GRIFFITH, Keshava RAJAGOPAL
  • Publication number: 20170021081
    Abstract: A method for pumping and oxygenating blood includes receiving a flow of gas including oxygen into a gas inlet manifold via a gas inlet. The flow of gas is passed through the hollow fibers from the gas inlet manifold to a gas outlet manifold. The flow of gas is output from the gas outlet manifold via a gas outlet. An impeller is rotated to generate a flow of blood that flows over the hollow fibers. Oxygen from the flow of gas is transferred to the flow of blood through the hollow fibers. Carbon dioxide is transferred from the flow of blood to the flow of gas through the hollow fibers.
    Type: Application
    Filed: January 28, 2016
    Publication date: January 26, 2017
    Inventors: Barry N. Gellman, Andrew Koert, Zhongjun Wu, Juntao Zhang, Bartley P. Griffith
  • Publication number: 20160296685
    Abstract: A blood oxygenator is disclosed comprising a housing, a blood inlet, a blood outlet, a spiral volute, a gas inlet, an oxygenator fiber bundle, and a gas outlet. The housing encloses the fiber bundle and provides the structure for the blood flow path and connectors. The fiber bundle comprises gas-exchange membranes which transfer oxygen to the blood and remove carbon dioxide when the blood flows across the membranes. The spiral volute guides the blood to flow through the fiber bundle. A gas flow chamber receives sweep gas containing oxygen and distributes the sweep gas into the fiber membranes, which gas is then exchanged with the blood being oxygenated.
    Type: Application
    Filed: December 23, 2014
    Publication date: October 13, 2016
    Inventors: Zhongjun WU, Bartley P. GRIFFITH
  • Publication number: 20160158489
    Abstract: Disclosed is a self-expanding cannula, systems using such cannulae, and methods of their use. The cannulae may comprise single lumen cannula (SLC) configurations and double lumen cannula (DLC) configurations, and include at least a first cannula and a self-expanding wire frame attached to the first cannula. Self-expanding wire frame is automatically expandable from a compressed state (providing a reduced cannula diameter as it is moved through a patients body to the site at which it is to be deployed) to an expanded state (which increases the diameter of the cannula to the diameter intended for its normal use). The expanded wire frame provides radial support to prevent a drainage canal (whether a patients blood vessel or a portion of the system inserted into the patients blood vessel) from collapsing as fluid is drained from the patient.
    Type: Application
    Filed: July 17, 2014
    Publication date: June 9, 2016
    Inventors: Zhongjun WU, Bartley P. GRIFFITH, Jun DING
  • Patent number: 9278168
    Abstract: An integrated centrifugal blood pump-oxygenator (1) which has a housing (2) with a top (3) having a blood inlet (4), a blood outlet (5) and a gas inlet (6), and a bottom (7) having a rotational body (8) being rotatably arranged in a rotor-housing (9) of the bottom (7). The integrated centrifugal blood pump-oxygenator (1) further has an oxygenator membrane (10) provided in an interior (11) of the housing (2), wherein in the operation state oxygen (12) is transferred from the gas inlet (6) through the oxygenator membrane (10) to a gas outlet (13) and blood (14) is brought in direct contact with the oxygenator membrane (10) by pumping the blood (14) with the rotational body (8) from the blood inlet (4) to the blood outlet (5). The rotational body (8) is magnetically journalled in a contact-free manner with respect to the rotor-housing (9). There is an extracorporeal life support system (1000), and a method of de-bubbling and priming a extracorporeal life support system (1000).
    Type: Grant
    Filed: June 26, 2013
    Date of Patent: March 8, 2016
    Assignee: THORATEC LLC
    Inventors: Barry N. Gellman, Andrew Koert, Zhongjun Wu, Juntao Zhang, Bartley P. Griffith
  • Publication number: 20150030664
    Abstract: The present application is drawn to a synthetic, polymer hydrogel-based material, which is able to actively induce the body's natural hemostatic coagulation process in blood or acellular plasma. The present invention provides the development of a primary amine containing polymer hydrogel capable of inducing blood coagulation and delivering therapeutics for hemostatic or wound care applications, and a method of forming such a primary amine containing polymer hydrogel capable of inducing the blood coagulation process. The primary amine containing polymer hydrogel is able to achieve the same end result as biological-based hemostatics, without the innate risk of disease transmission or immunological response, and at a fraction of the price. Furthermore, due to its inherent hydrogel-based design the material has the capability of arresting blood loss while simultaneously delivering therapeutics in a controlled manner, potentially revolutionizing the way in which wounds are treated.
    Type: Application
    Filed: October 3, 2014
    Publication date: January 29, 2015
    Applicants: UNIVERSITY OF MARYLAND, BALTIMORE, UNIVERSITY OF MARYLAND AT COLLEGE PARK
    Inventors: Brendan J. CASEY, Peter KOFINAS, Adam BEHRENS, Trevor A. SNYDER, Bartley P. GRIFFITH
  • Publication number: 20140037500
    Abstract: An integrated centrifugal blood pump-oxygenator (1) which has a housing (2) with a top (3) having a blood inlet (4), a blood outlet (5) and a gas inlet (6), and a bottom (7) having a rotational body (8) being rotatably arranged in a rotor-housing (9) of the bottom (7). The integrated centrifugal blood pump-oxygenator (1) further has an oxygenator membrane (10) provided in an interior (11) of the housing (2), wherein in the operation state oxygen (12) is transferred from the gas inlet (6) through the oxygenator membrane (10) to a gas outlet (13) and blood (14) is brought in direct contact with the oxygenator membrane (10) by pumping the blood (14) with the rotational body (8) from the blood inlet (4) to the blood outlet (5). The rotational body (8) is magnetically journalled in a contact-free manner with respect to the rotor-housing (9). There is an extracorporeal life support system (1000), and a method of de-bubbling and priming a extracorporeal life support system (1000).
    Type: Application
    Filed: June 26, 2013
    Publication date: February 6, 2014
    Applicant: Thoratec LLC
    Inventors: Barry N. Gellman, Andrew Koert, Zhongjun Wu, Juntao Zhang, Bartley P. Griffith
  • Patent number: 8496874
    Abstract: An integrated centrifugal blood pump-oxygenator (1) which has a housing (2) with a top (3) having a blood inlet (4), a blood outlet (5) and a gas inlet (6), and a bottom (7) having a rotational body (8) being rotatably arranged in a rotor-housing (9) of the bottom (7). The integrated centrifugal blood pump-oxygenator (1) further has an oxygenator membrane (10) provided in an interior (11) of the housing (2), wherein in the operation state oxygen (12) is transferred from the gas inlet (6) through the oxygenator membrane (10) to a gas outlet (13) and blood (14) is brought in direct contact with the oxygenator membrane (10) by pumping the blood (14) with the rotational body (8) from the blood inlet (4) to the blood outlet (5). The rotational body (8) is magnetically journalled in a contact-free manner with respect to the rotor-housing (9). There is an extracorporeal life support system (1000), and a method of de-bubbling and priming a extracorporeal life support system (1000).
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: July 30, 2013
    Assignee: Thoratec LLC
    Inventors: Barry N. Gellman, Andrew Koert, Zhongjun Wu, Juntao Zhang, Bartley P. Griffith
  • Publication number: 20120189672
    Abstract: The present invention relates to methods and compositions for prevention of graft rejection in lung transplant recipients and for treatment of subjects with pulmonary disorders. Specifically, the methods and compositions of the invention provide a means for inhibiting immune response mediated inflammatory processes in the lungs. The method of the invention comprises the administration of aerosolized cyclosporine for prevention of acute and/or chronic refractory rejection in lung transplant patients. The invention further provides for the use of aerosolized cyclosporine to treat subjects having immunologically mediated inflammatory pulmonary disorders including, but not limited to, asthma, cystic fibrosis, idiopathic pulmonary fibrosis, chronic bronchitis and allergic rhinitis.
    Type: Application
    Filed: April 4, 2012
    Publication date: July 26, 2012
    Inventors: Aldo T. Iacono, Bartley P. Griffith
  • Publication number: 20120009242
    Abstract: The present application is drawn to a synthetic, polymer hydrogel-based material, which is able to actively induce the body's natural hemostatic coagulation process in blood or acellular plasma. The present invention provides the development of a primary amine containing polymer hydrogel capable of inducing blood coagulation and delivering therapeutics for hemostatic or wound care applications, and a method of forming such a primary amine containing polymer hydrogel capable of inducing the blood coagulation process. The primary amine containing polymer hydrogel is able to achieve the same end result as biological-based hemostatics, without the innate risk of disease transmission or immunological response, and at a fraction of the price. Furthermore, due to its inherent hydrogel-based design the material has the capability of arresting blood loss while simultaneously delivering therapeutics in a controlled manner, potentially revolutionizing the way in which wounds are treated.
    Type: Application
    Filed: November 3, 2009
    Publication date: January 12, 2012
    Applicants: UNIVERSITY OF MARYLAND, COLLEGE PARK, UNIVERSITY OF MARYLAND, BALTIMORE
    Inventors: Brendan J. Casey, Peter Kofinas, Adam Behrens, Trevor A. Snyder, Bartley P. Griffith
  • Patent number: 6932792
    Abstract: A cardioplegia catheter is configured to extend into the ascending aorta with a proximal portion of the shaft extending into a left chamber of the heart through a aortic valve and out of the heart through a penetration in a wall thereof. The cardioplegia catheter has an occlusion member configured to occlude the ascending aorta between the brachiocephalic artery and the coronary ostia. An arterial return cannula delivers oxygenated blood to the arterial system downstream of the occlusion member, while cardioplegic fluid is delivered through a lumen in the cardioplegia catheter upstream of the occlusion member to induce cardioplegic arrest.
    Type: Grant
    Filed: July 17, 2000
    Date of Patent: August 23, 2005
    Inventors: Frederick G. St. Goar, John H. Stevens, Hanson S. Gifford, III, Bartley P. Griffith
  • Publication number: 20030026855
    Abstract: The present invention provides improved artificial blood fluids and microflow drag reducing factors for use in such fluids as well as the restoration and/or enhancement of microcirculation and tissue oxygenation. In accordance with preferred embodiments, artificial blood fluids with synthetic or natural oxygen carrying compounds are improved through the inclusion of small amounts of blood soluble microflow drag reducing factors. Microflow drag reducing factors may be combined with physiologically acceptable carriers to form fluids for the restoration and/or enhancement of microcirculation and tissue oxygenation. Physiologically acceptable carriers are preferred as those having a polyethylene glycol adjuvant. The concentration of microflow drag reducing factor is from about 0.1 ppm to about 10,000 ppm by weight of the blood fluid. Certain embodiments feature the employment of certain third and fourth generation dendritic polymers to improve emulsification of artificial blood fluids.
    Type: Application
    Filed: January 2, 2002
    Publication date: February 6, 2003
    Inventors: Marina V. Kameneva, Harvey S. Borovetz, Toby M. Chapman, Bartley P. Griffith, Brandon M. Repko