Patents by Inventor Bartosz BORTNIK

Bartosz BORTNIK has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11630061
    Abstract: Provided herein are devices, systems, and methods for characterizing a biological sample in vivo or ex vivo in real-time using time-resolved spectroscopy. A light source generates a light pulse or continuous light wave and excites the biological sample, inducing a responsive fluorescent signal. A demultiplexer splits the signal into spectral bands and a time delay is applied to the spectral bands so as to capture data with a detector from multiple spectral bands from a single excitation pulse. The biological sample is characterized by analyzing the fluorescence intensity magnitude and/or decay of the spectral bands. The sample may comprise one or more exogenous or endogenous fluorophore. The device may be a two-piece probe with a detachable, disposable distal end. The systems may combine fluorescence spectroscopy with other optical spectroscopy or imaging modalities. The light pulse may be focused at a single focal point or scanned or patterned across an area.
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: April 18, 2023
    Assignees: Black Light Surgical, Inc., Cedars-Sinai Medical Center
    Inventors: Pramod Butte, Keith Black, Jack Kavanaugh, Bartosz Bortnik, Zhaojun Nie
  • Publication number: 20220276167
    Abstract: Provided herein are devices, systems, and methods for characterizing a biological sample in vivo or ex vivo in real-time using time-resolved spectroscopy. A light source generates a light pulse or continuous light wave and excites the biological sample, inducing a responsive fluorescent signal. A demultiplexer splits the signal into spectral bands and a time delay is applied to the spectral bands so as to capture data with a detector from multiple spectral bands from a single excitation pulse. The biological sample is characterized by analyzing the fluorescence intensity magnitude and/or decay of the spectral bands. The sample may comprise one or more exogenous or endogenous fluorophore. The device may be a two-piece probe with a detachable, disposable distal end. The systems may combine fluorescence spectroscopy with other optical spectroscopy or imaging modalities. The light pulse may be focused at a single focal point or scanned or patterned across an area.
    Type: Application
    Filed: January 19, 2022
    Publication date: September 1, 2022
    Inventors: Pramod Butte, Keith Black, Jack Kavanaugh, Bartosz Bortnik, Zhaojun Nie
  • Publication number: 20200319108
    Abstract: Provided herein are devices, systems, and methods for characterizing a biological sample in vivo or ex vivo in real-time using time-resolved spectroscopy. A light source generates a light pulse or continuous light wave and excites the biological sample, inducing a responsive fluorescent signal. A demultiplexer splits the signal into spectral bands and a time delay is applied to the spectral bands so as to capture data with a detector from multiple spectral bands from a single excitation pulse. The biological sample is characterized by analyzing the fluorescence intensity magnitude and/or decay of the spectral bands. The sample may comprise one or more exogenous or endogenous fluorophore. The device may be a two-piece probe with a detachable, disposable distal end. The systems may combine fluorescence spectroscopy with other optical spectroscopy or imaging modalities. The light pulse may be focused at a single focal point or scanned or patterned across an area.
    Type: Application
    Filed: April 15, 2020
    Publication date: October 8, 2020
    Inventors: Pramod Butte, Keith Black, Jack Kavanaugh, Bartosz Bortnik, Zhaojun Nie
  • Patent number: 10656089
    Abstract: Provided herein are devices, systems, and methods for characterizing a biological sample in vivo or ex vivo in real-time using time-resolved spectroscopy. A light source generates a light pulse or continuous light wave and excites the biological sample, inducing a responsive fluorescent signal. A demultiplexer splits the signal into spectral bands and a time delay is applied to the spectral bands so as to capture data with a detector from multiple spectral bands from a single excitation pulse. The biological sample is characterized by analyzing the fluorescence intensity magnitude and/or decay of the spectral bands. The sample may comprise one or more exogenous or endogenous fluorophore. The device may be a two-piece probe with a detachable, disposable distal end. The systems may combine fluorescence spectroscopy with other optical spectroscopy or imaging modalities. The light pulse may be focused at a single focal point or scanned or patterned across an area.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: May 19, 2020
    Assignees: Black Light Surgical, Inc., Cedars-Sinai Medical Center
    Inventors: Pramod Butte, Keith Black, Jack Kavanaugh, Bartosz Bortnik, Zhaojun Nie
  • Publication number: 20170290515
    Abstract: Provided herein are methods for classifying or characterizing a biological sample in vivo or ex vivo in real-time using time-resolved spectroscopy and/or electrical stimulation. A biological sample may produce a responsive fluorescence signal when irradiated by a light excitation signal or pulse at a predetermined wavelength. The responsive fluorescence signal may be recorded. The intensity of the excitation wavelength may be recorded and used to normalize the recorded responsive fluorescence signal. The biological sample may produce a responsive electrical signal in response to electrical stimulation. Raw fluorescence decay data may be generated from the responsive fluorescence signal and pre-processed. The pre-processed raw fluorescence decay data may be de-convolved to remove an instrument response function therefrom and generate true fluorescence decay data.
    Type: Application
    Filed: April 7, 2017
    Publication date: October 12, 2017
    Inventors: Pramod BUTTE, Chirag PATIL, Keith L. BLACK, Fartash VASEFI, David Scott KITTLE, Bartosz BORTNIK, Zhaojun NIE