Patents by Inventor Baruh Hason

Baruh Hason has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11632186
    Abstract: Method and system for capturing signals in accordance with allocated resources. One method includes receiving, from a server by a network interface of a first communication device located in a cell, identification information of a second communication device located in the cell. The method further includes receiving, from a base station by the network interface of the first communication device, a resource allocation message destined for the second communication device. The resource allocation message indicates a resource allocation for the second communication device on an uplink channel of the base station. The method further includes decoding, by an electronic processor of the first communication device, the resource allocation message using the identification information of the second communication device. The method further includes capturing, by the network interface of the first communication device, signals based on the resource allocation for the second communication device.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: April 18, 2023
    Assignee: MOTOROLA SOLUTIONS, INC.
    Inventors: Rony Gotman, Baruh Hason, Guy Holtzman, Gabi Ofir
  • Patent number: 11611817
    Abstract: Systems and assemblies for providing both cellular and passive optical local area network (POLAN) data signals along a single, shared fiber optic backbone within an in-building network architecture are provided herein. Systems include a headend unit that combines data signals from a cellular network and optical line terminal (OLT) onto the fiber optic backbone, which is then connected to a series of daisy-chained fiber optic assembly units. An example fiber optic assembly unit includes an asymmetric coupler that splits an input fiber optic signal from the fiber optic backbone into an output fiber optic signal and a throughput fiber optic signal that is fed back onto the continuing fiber optic backbone. The output fiber optic signal is filtered into dense wavelength-division multiplexing (DWDM) channels for providing data signals to a wireless or cellular network and further split into multiple passive optical network (PON) outputs for a local area network (LAN).
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: March 21, 2023
    Assignee: CORNING RESEARCH & DEVELOPMENT CORPORATION
    Inventors: Dror Harel, Baruh Hason, Pinhas Yehuda Rosenfelder, Yair Zeev Shapira
  • Patent number: 11438678
    Abstract: Wavelength-based random access in an optical communications network for a wireless communications system (WCS) is disclosed. An optical network unit(s) (ONU(s)) is configured to generate a random access signal comprising an unsolicited buffer occupancy (BO) report to request uplink allocation as soon as the ONU(s) receives a non-periodic uplink data burst. The ONU(s) then sends an optical random access signal including the unsolicited BO report to an optical line terminator (OLT) based on a random access wavelength, which is so determined not to cause any interference with a downlink optical communications signal(s) and an uplink optical communications signal(s) being regularly communicated between the OLT and the ONU(s). As a result, it is possible to reduce access delay at the ONU(s) for sending the non-periodic uplink data burst without requiring frequent polling from the OLT, thus helping to reduce signaling overhead and improve throughput of the optical communications network.
    Type: Grant
    Filed: April 7, 2021
    Date of Patent: September 6, 2022
    Assignee: Corning Research & Development Corporation
    Inventor: Baruh Hason
  • Publication number: 20220086543
    Abstract: Systems and assemblies for providing both cellular and passive optical local area network (POLAN) data signals along a single, shared fiber optic backbone within an in-building network architecture are provided herein. Systems include a headend unit that combines data signals from a cellular network and optical line terminal (OLT) onto the fiber optic backbone, which is then connected to a series of daisy-chained fiber optic assembly units. An example fiber optic assembly unit includes an asymmetric coupler that splits an input fiber optic signal from the fiber optic backbone into an output fiber optic signal and a throughput fiber optic signal that is fed back onto the continuing fiber optic backbone. The output fiber optic signal is filtered into dense wavelength-division multiplexing (DWDM) channels for providing data signals to a wireless or cellular network and further split into multiple passive optical network (PON) outputs for a local area network (LAN).
    Type: Application
    Filed: September 10, 2021
    Publication date: March 17, 2022
    Inventors: Dror Harel, Baruh Hason, Pinhas Yehuda Rosenfelder, Yair Zeev Shapira
  • Publication number: 20210392420
    Abstract: Wavelength-based random access in an optical communications network for a wireless communications system (WCS) is disclosed. An optical network unit(s) (ONU(s)) is configured to generate a random access signal comprising an unsolicited buffer occupancy (BO) report to request uplink allocation as soon as the ONU(s) receives a non-periodic uplink data burst. The ONU(s) then sends an optical random access signal including the unsolicited BO report to an optical line terminator (OLT) based on a random access wavelength, which is so determined not to cause any interference with a downlink optical communications signal(s) and an uplink optical communications signal(s) being regularly communicated between the OLT and the ONU(s). As a result, it is possible to reduce access delay at the ONU(s) for sending the non-periodic uplink data burst without requiring frequent polling from the OLT, thus helping to reduce signaling overhead and improve throughput of the optical communications network.
    Type: Application
    Filed: April 7, 2021
    Publication date: December 16, 2021
    Inventor: Baruh Hason
  • Patent number: 11115124
    Abstract: Adaptive scheduling for periodic data traffic in an optical communications network for a wireless communications system (WCS) is disclosed. Herein, an optical line terminator (OLT) in an optical communications network is configured to dynamically adjust a scheduled start time(s) of a scheduled period(s) in a periodic schedule to help reduce a schedule misalignment to below a predefined threshold. More specifically, the OLT is configured to determine the schedule misalignment. Accordingly, the OLT can adjust the respective scheduled start time(s) of the scheduled period(s) based on a temporal step determined based on the determined schedule misalignment to reduce the schedule misalignment to below the predefined threshold.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: September 7, 2021
    Assignee: Corning Research & Development Corporation
    Inventor: Baruh Hason
  • Patent number: 11005809
    Abstract: Methods, devices, and systems for generating a plurality of network addresses for a plurality of communication devices communicating over a network. One method includes receiving, with an electronic processor included in a server, geographical coordinates of the network, generating, with the electronic processor, a first set of bits based on the geographical coordinates, generating, with the electronic processor, a second set of bits based on a random number, and generating, with the electronic processor, a baseline address including the first set of bits and the second set of bits. The method also includes generating the plurality of network addresses, wherein each of the plurality of network addresses includes the baseline address and a unique offset. In addition, the method includes assigning one of the plurality of network addresses to one of the plurality of communication devices.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: May 11, 2021
    Assignee: MOTOROLA SOLUTIONS, INC.
    Inventors: Kiril Danilchenko, Baruh Hason, Guy Holtzman
  • Patent number: 10979789
    Abstract: Wavelength-based random access in an optical communications network for a wireless communications system (WCS) is disclosed. An optical network unit(s) (ONU(s)) is configured to generate a random access signal comprising an unsolicited buffer occupancy (BO) report to request uplink allocation as soon as the ONU(s) receives a non-periodic uplink data burst. The ONU(s) then sends an optical random access signal including the unsolicited BO report to an optical line terminator (OLT) based on a random access wavelength, which is so determined not to cause any interference with a downlink optical communications signal(s) and an uplink optical communications signal(s) being regularly communicated between the OLT and the ONU(s). As a result, it is possible to reduce access delay at the ONU(s) for sending the non-periodic uplink data burst without requiring frequent polling from the OLT, thus helping to reduce signaling overhead and improve throughput of the optical communications network.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: April 13, 2021
    Assignee: Corning Research & Development Corporation
    Inventor: Baruh Hason
  • Patent number: 10455016
    Abstract: Methods and systems for merging isolated networks. One method includes determining that a second network is located within a predetermined distance of a first network. The method also includes exchanging content between a first network core of the first network and a second network core of the second network over a side haul communication channel. The exchange of content results in a first base station transceiver of the first network being capable of communicating with first network components of the first network core and with mirrored instances of second network components of the second network core within the first network core. The method also includes controlling, with the first network core, communications through the first base station transceiver using the second content included in the mirrored instances of the second network components.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: October 22, 2019
    Assignee: MOTOROLA SOLUTIONS, INC.
    Inventors: Itzhak Shperling, Baruh Hason, Gabi Ofir
  • Patent number: 10198954
    Abstract: A method and apparatus are provided for positioning an unmanned robotic vehicle (URV). The URV captures a set of one or more of image and non-image information of an object while positioned at a first position, provides the set of image/non-image information to a server entity, in response to providing the set of image/non-image information, receives a three-dimensional (3D) model associated with the object, autonomously determines a second position based on the 3D model, and autonomously navigates to the second position. At the second position, the URV may capture further image and/or non-image information and, based on the further captured image/non-image information, autonomously determine, and navigate to, a third position. The steps of capturing further image and/or non-image information and, based on the captured image and/or non-image information, autonomously determining and navigating to further positions may be repeated indefinitely, or until otherwise instructed.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: February 5, 2019
    Assignee: MOTOROLA SOLUTIONS, INC.
    Inventors: Guy Holtzman, Baruh Hason, Salomon Serfaty
  • Publication number: 20180316544
    Abstract: Methods and systems for merging isolated networks. One method includes determining that a second network is located within a predetermined distance of a first network. The method also includes exchanging content between a first network core of the first network and a second network core of the second network over a side haul communication channel. The exchange of content results in a first base station transceiver of the first network being capable of communicating with first network components of the first network core and with mirrored instances of second network components of the second network core within the first network core. The method also includes controlling, with the first network core, communications through the first base station transceiver using the second content included in the mirrored instances of the second network components.
    Type: Application
    Filed: April 26, 2017
    Publication date: November 1, 2018
    Inventors: Itzhak Shperling, Baruh Hason, Gabi Ofir
  • Publication number: 20180192413
    Abstract: Method and system for capturing signals in accordance with allocated resources. One method includes receiving, from a server by a network interface of a first communication device located in a cell, identification information of a second communication device located in the cell. The method further includes receiving, from a base station by the network interface of the first communication device, a resource allocation message destined for the second communication device. The resource allocation message indicates a resource allocation for the second communication device on an uplink channel of the base station. The method further includes decoding, by an electronic processor of the first communication device, the resource allocation message using the identification information of the second communication device. The method further includes capturing, by the network interface of the first communication device, signals based on the resource allocation for the second communication device.
    Type: Application
    Filed: December 29, 2016
    Publication date: July 5, 2018
    Inventors: Rony Gotman, Baruh Hason, Guy Holtzman, Gabi Ofir
  • Patent number: 10009801
    Abstract: A system and method for forming an incident area network including a first sub-system and a second sub-system. The method includes detecting, with an electronic processor of the first sub-system, a network connection to the second sub-system. The method includes initiating a sub-system synchronization process. The process includes including transmitting, from a first domain name server of the first sub-system to a second domain name server of the second sub-system, a first global network address for a first global application instance of the first sub-system, and a first name corresponding to the first global network address. The process includes transmitting, from a first network address translator of the first sub-system to a second network address translator of the second sub-system, the first global network address. The process includes synchronizing a first localized application instance of the first sub-system, with a second localized application instance of the second sub-system.
    Type: Grant
    Filed: December 5, 2016
    Date of Patent: June 26, 2018
    Assignee: MOTOROLA SOLUTIONS, INC.
    Inventors: Guy Holtzman, Kiril Danilchenko, Baruh Hason
  • Publication number: 20180159822
    Abstract: A system and method for forming an incident area network including a first sub-system and a second sub-system. The method includes detecting, with an electronic processor of the first sub-system, a network connection to the second sub-system. The method includes initiating a sub-system synchronization process. The process includes including transmitting, from a first domain name server of the first sub-system to a second domain name server of the second sub-system, a first global network address for a first global application instance of the first sub-system, and a first name corresponding to the first global network address. The process includes transmitting, from a first network address translator of the first sub-system to a second network address translator of the second sub-system, the first global network address. The process includes synchronizing a first localized application instance of the first sub-system, with a second localized application instance of the second sub-system.
    Type: Application
    Filed: December 5, 2016
    Publication date: June 7, 2018
    Inventors: Guy Holtzman, Kiril Danilchenko, Baruh Hason
  • Patent number: 9961562
    Abstract: Systems and methods for extending coverage of a communication network. In one embodiment, a system includes a first base station configured to communicate with a first mobile communication device and to generate a core interface message. The system also includes a second mobile communication device and an application level server. The second mobile communication device is connected to the first base station and is configured to obtain the core interface message from the first base station, generate a message including the core interface message in an application layer of the message, address the message to the application level server, and transmit the message to the application level server. The application level server is configured to receive the message, extract the core interface message from the message, and transfer the core interface message to a network core to emulate an interface between the first base station and the network core.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: May 1, 2018
    Assignee: MOTOROLA SOLUTIONS, INC.
    Inventors: Gabi Ofir, Rony Gotman, Baruh Hason
  • Publication number: 20170289096
    Abstract: Methods, devices, and systems for generating a plurality of network addresses for a plurality of communication devices communicating over a network. One method includes receiving, with an electronic processor included in a server, geographical coordinates of the network, generating, with the electronic processor, a first set of bits based on the geographical coordinates, generating, with the electronic processor, a second set of bits based on a random number, and generating, with the electronic processor, a baseline address including the first set of bits and the second set of bits. The method also includes generating the plurality of network addresses, wherein each of the plurality of network addresses includes the baseline address and a unique offset. In addition, the method includes assigning one of the plurality of network addresses to one of the plurality of communication devices.
    Type: Application
    Filed: March 29, 2016
    Publication date: October 5, 2017
    Inventors: Kiril Danilchenko, Baruh Hason, Guy Holtzman
  • Publication number: 20170193828
    Abstract: A method and apparatus are provided for positioning an unmanned robotic vehicle (URV). The URV captures a set of one or more of image and non-image information of an object while positioned at a first position, provides the set of image/non-image information to a server entity, in response to providing the set of image/non-image information, receives a three-dimensional (3D) model associated with the object, autonomously determines a second position based on the 3D model, and autonomously navigates to the second position. At the second position, the URV may capture further image and/or non-image information and, based on the further captured image/non-image information, autonomously determine, and navigate to, a third position. The steps of capturing further image and/or non-image information and, based on the captured image and/or non-image information, autonomously determining and navigating to further positions may be repeated indefinitely, or until otherwise instructed.
    Type: Application
    Filed: December 30, 2015
    Publication date: July 6, 2017
    Inventors: Guy Holtzman, Baruh Hason, Salomon Serfaty
  • Patent number: 9572110
    Abstract: A method and apparatus are disclosed for setting an initial transmit power level of a deployable network that overlaps in coverage with a WAN. Multiple transmit power levels are determined. For each transmit power level, a geographical coverage area of the deployable network at an incident is determined based on a signal propagation model, a first set of mobile devices is determined that are within the geographical coverage area and that are involved in responding to the incident, and a second set of mobile devices is determined that are within the geographical coverage area, that are not involved in responding to the incident, and that may be interfered with by transmissions of the deployable network. A transmit power level of the multiple transmit power levels then is selected as the initial transmit power level based on the first and second sets of mobile devices determined for each transmit power level.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: February 14, 2017
    Assignee: MOTOROLA SOLUTIONS, INC.
    Inventors: Salomon Serfaty, Baruh Hason, Guy Holtzman
  • Publication number: 20160366596
    Abstract: Systems and methods for extending coverage of a communication network. In one embodiment, a system includes a first base station configured to communicate with a first mobile communication device and to generate a core interface message. The system also includes a second mobile communication device and an application level server. The second mobile communication device is connected to the first base station and is configured to obtain the core interface message from the first base station, generate a message including the core interface message in an application layer of the message, address the message to the application level server, and transmit the message to the application level server. The application level server is configured to receive the message, extract the core interface message from the message, and transfer the core interface message to a network core to emulate an interface between the first base station and the network core.
    Type: Application
    Filed: June 15, 2015
    Publication date: December 15, 2016
    Inventors: Gabi Ofir, Rony Gotman, Baruh Hason
  • Patent number: 9473979
    Abstract: A method and system for data transmission is provided. Compressed payload packets are transmitted on one or more payload channels. On a header restoration channel, header restoration packets are transmitted for restoring headers of at least some of the compressed payload packets.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: October 18, 2016
    Assignee: MOTOROLA SOLUTIONS, INC.
    Inventors: Valentin Oprescu-Surcobe, Baruh Hason, Gabi Ofir