Patents by Inventor Barun Maskara

Barun Maskara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160206887
    Abstract: An apparatus may include an implantable therapy circuit that provides bi-ventricular pacing to a subject, a heart sound signal sensing circuit that produces a sensed heart sound signal that is representative of at least one heart sound associated with mechanical cardiac activity, a memory circuit to store one or more heart sound templates of cardiac capture, and a comparison circuit that compares a segment of the sensed heart sound signal to the one or more heart sound templates of cardiac capture to identify ventricles in which cardiac capture was induced by the bi-ventricular pacing. In some situations, an indication of the ventricles in which cardiac capture was induced may be generated according to the comparison.
    Type: Application
    Filed: March 29, 2016
    Publication date: July 21, 2016
    Inventors: Barun Maskara, Qi An, Pramodsingh Hirasingh Thakur, Julie A. Thompson
  • Patent number: 9393417
    Abstract: A device embodiment is configured to deliver vagal stimulation therapy (VST) to a vagus nerve of a patient. The device embodiment includes a neural stimulator, an implantable pressure sensor, and a pressure analyzer. The neural stimulator is configured to deliver the VST to the vagus nerve in a cervical region of the patient. The implantable pressure sensor is configured to be implanted in the cervical region and to detect pressure changes in the cervical region caused by laryngeal vibrations. The pressure sensor is configured to generate sensed pressure values. The pressure analyzer is configured to analyze the sensed pressure values generated by the pressure sensor. The analyzer is configured to detect laryngeal vibrations or cough from the sensed pressure values.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: July 19, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Shantha Arcot-Krishnamurthy, Barun Maskara
  • Publication number: 20160192890
    Abstract: Systems and methods for monitoring physical activities or exercise are disclosed. A system can comprise an information receiver circuit capable of receiving information indicative of physical activities, and a physical activity analyzer circuit coupled to the information receiver circuit. The physical activity analyzer circuit can detect one or more activity parameters from the physical activity information, and classify the physical activity into one of a plurality of activity levels including a vigorous exercise, a moderate exercise, or a mild exercise or activities of daily living. The one or more activity parameters can include an activity intensity parameter, an activity duration parameter, or an activity transition pattern including a change or a rate of change from a first activity level to a different second activity level. The system can optionally include a heart failure detector that detects a HF event indicative of worsening HF using the activity levels.
    Type: Application
    Filed: December 30, 2015
    Publication date: July 7, 2016
    Inventors: Viktoria A. Averina, Pramodsingh Hirasingh Thakur, Qi An, Barun Maskara
  • Publication number: 20160174904
    Abstract: Systems and methods are described for subject rehospitalization management. In an example, multiple physiologic signals can be obtained from a subject using multiple sensors. In response to a hospitalization event, pre-hospitalization characteristics of the multiple physiologic signals can be identified. Post-hospitalization characteristics of the multiple physiologic signals can be identified, including characteristics that differ from their corresponding pre-hospitalization characteristics. Later subsequent physiologic signals can be further monitored after the hospitalization event, such as using the same multiple sensors, and subsequent physiologic signal characteristics can be identified. In an example, a heart failure diagnostic indication can be determined using information about the pre-hospitalization characteristics, the post-hospitalization characteristics, and the subsequent characteristics.
    Type: Application
    Filed: March 2, 2016
    Publication date: June 23, 2016
    Inventors: Pramodsingh Hirasingh Thakur, Qi An, Barun Maskara, Julie A. Thompson
  • Patent number: 9345410
    Abstract: An apparatus, such as a cardiac function management system can detect heart sounds following a sensed transition in physical activity level, such as from an elevated physical activity level to rest. A technique can include systems, methods, machine-readable media, or other techniques that can include identifying a physical activity level transition, receiving a heart sound signal, determining characteristics of the heart sound and subject physiologic activity to provide an indication, such as a heart failure status indication.
    Type: Grant
    Filed: March 3, 2014
    Date of Patent: May 24, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Pramodsingh Hirasingh Thakur, Qi An, Barun Maskara
  • Patent number: 9339231
    Abstract: Systems and methods are described for subject rehospitalization management. In an example, multiple physiologic signals can be obtained from a subject using multiple sensors. In response to a hospitalization event, pre-hospitalization characteristics of the multiple physiologic signals can be identified. Post-hospitalization characteristics of the multiple physiologic signals can be identified, including characteristics that differ from their corresponding pre-hospitalization characteristics. Later subsequent physiologic signals can be further monitored after the hospitalization event, such as using the same multiple sensors, and subsequent physiologic signal characteristics can be identified. In an example, a heart failure diagnostic indication can be determined using information about the pre-hospitalization characteristics, the post-hospitalization characteristics, and the subsequent characteristics.
    Type: Grant
    Filed: March 4, 2014
    Date of Patent: May 17, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Pramodsingh Hirasingh Thakur, Qi An, Barun Maskara, Julie A. Thompson
  • Patent number: 9332920
    Abstract: An anatomical mapping system includes a plurality of mapping electrodes each having an electrode location and configured to detect activation signals of intrinsic physiological activity within an anatomical structure. A mapping processor is associated with the plurality of mapping electrodes and is configured to record the detected activation signals and associate one of the plurality of mapping electrodes with each recorded activation signal. The mapping processor is further configured to analyze the recorded activation signals to identify at least one recurring pattern based on a relationship between a timing of the detected activation signals and the electrode locations of the mapping electrode associated with each detected activation signal.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: May 10, 2016
    Assignee: Boston Scientific Scimed Inc.
    Inventors: Pramodsingh H. Thakur, Barun Maskara, Shantha Arcot-Krishnamurthy, Sunipa Saha, Shibaji Shome
  • Patent number: 9320906
    Abstract: An apparatus may include an implantable therapy circuit that provides bi-ventricular pacing to a subject, a heart sound signal sensing circuit that produces a sensed heart sound signal that is representative of at least one heart sound associated with mechanical cardiac activity, a memory circuit to store one or more heart sound templates of cardiac capture, and a comparison circuit that compares a segment of the sensed heart sound signal to the one or more heart sound templates of cardiac capture to identify ventricles in which cardiac capture was induced by the bi-ventricular pacing. In some situations, an indication of the ventricles in which cardiac capture was induced may be generated according to the comparison.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: April 26, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Barun Maskara, Qi An, Pramodsingh Hirasingh Thakur, Julie A. Thompson
  • Publication number: 20160101290
    Abstract: Devices and methods for improving device therapy such as cardiac resynchronization therapy (CRT) by determining a desired value for a device parameter are described. An ambulatory medical device can receive one or more physiologic signals and generate multiple signal metrics from the physiologic signals. The ambulatory medical device can determine a desired value for a device parameter, such as a timing parameter used for controlling the delivery of CRT pacing to various heart chambers, using information fusion of signal metrics that are selected based on one or more of a signal metric sensitivity to perturbations to the device parameter in response to a stimulation, a signal metric variability in response to a stimulation, or a covariability between two or more signal metrics in response to a stimulation. The ambulatory medical device can program a stimulation using the desired device parameter value, and deliver the programmed stimulation to one or more target sites to achieve desired therapeutic effects.
    Type: Application
    Filed: December 15, 2015
    Publication date: April 14, 2016
    Inventors: Qi An, Barun Maskara, Pramodsingh Hirasingh Thakur, Julie A. Thompson
  • Publication number: 20160089050
    Abstract: An anatomical mapping system and method includes mapping electrodes configured to detect activation signals of cardiac activity. A processing system is configured to record the detected activation signals and generate a vector field for each sensed activation signal during each instance of the physiological activity. The processing system determines an onset time and alternative onset time candidates, identifies an initial vector field template based on a degree of similarity between the initial vector field and a vector field template from a bank of templates, then determines an optimized onset time for each activation signal based on a degree similarity between the onset time candidates and initial vector field template.
    Type: Application
    Filed: September 28, 2015
    Publication date: March 31, 2016
    Inventors: Pramodsingh H. Thakur, Shantha Arcot-Krishnamurthy, Allan C. Shuros, Shibaji Shome, Barun Maskara, Sunipa Saha
  • Patent number: 9295847
    Abstract: Method and systems related to monitoring right ventricular function during pacing by a cardiac rhythm management device are described. One or more pacing parameters are selected to provide cardiac resynchronization therapy. For example, the one or more pacing parameters may be selected to provide an optimal or improved therapy. The heart is paced using the selected pacing parameters. While pacing with the selected parameters, pressure is sensed via a pressure sensor disposed the pulmonary artery. The sensed pressure is analyzed to determine right ventricular function achieved during the pacing using the selected pacing parameters. A signal, such as an alert signal or control signal, is generated based on the right ventricular function achieved during the pacing.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: March 29, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Abhilash Patangay, Barun Maskara, Jonathan T. Kwok, Jiang Ding, Yinghong Yu
  • Patent number: 9254390
    Abstract: Devices and methods for improving device therapy such as cardiac resynchronization therapy (CRT) are described. An ambulatory medical device can receive one or more physiologic signals and generate multiple signal metrics from the physiologic signals. The ambulatory medical device can determine a desired value for a device parameter, such as a timing parameter used for controlling the delivery of CRT, using information fusion of signal metrics that are selected based on one or more of a signal metric sensitivity to perturbations to the device parameter, a signal metric variability, or a covariability between two or more signal metrics. The ambulatory medical device can program a stimulation using the desired device parameter value, and deliver the programmed stimulation to one or more target sites to achieve desired therapeutic effects.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: February 9, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Qi An, Barun Maskara, Pramodsingh Hirasingh Thakur, Julie A. Thompson
  • Patent number: 9227072
    Abstract: Devices and methods for improving device therapy such as cardiac resynchronization therapy (CRT) by determining a desired value for a device parameter are described. An ambulatory medical device can be configured to detect a heart sound signal and generate one or more heart sound metrics, detect a characteristic indicative of cannon waves, and determine a desired value for a device parameter, such as a timing parameter which can be used to control the delivery of CRT pacing to various heart chambers. The desired device parameter value can be determined using the heart sound metrics and the characteristic indicative of the cannon waves. The ambulatory medical device can program stimulation using the desired device parameter value, and deliver the programmed stimulations to one or more target sites to achieve desired therapeutic effects.
    Type: Grant
    Filed: March 3, 2014
    Date of Patent: January 5, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Qi An, Barun Maskara, Pramodsingh Hirasingh Thakur, Julie A. Thompson
  • Publication number: 20150342492
    Abstract: A cardiac rhythm management system senses a cardiac signal indicative of heartbeats and an acoustic signal indicative of heart sounds and detects atrial tachyarrhythmia based on the sensed cardiac and acoustic signals. In various embodiments, the system senses the cardiac and acoustic signals without using an atrial lead, thus allowing for, for example, monitoring atrial fibrillation burden in a heart failure patient who does not wear an implantable device with an atrial lead. In various embodiments, the system detects heartbeats and heart sounds, measures parameters associated with the detected heartbeats and heart sounds, and detects one or more specified types of atrial tachyarrhythmia using the measured parameters. In various embodiments, the measured parameters are selected from heart rate, heart sound amplitude, cycle length variability, and systolic and diastolic intervals.
    Type: Application
    Filed: May 20, 2015
    Publication date: December 3, 2015
    Inventors: Pramodsingh Hirasingh Thakur, Qi An, Barun Maskara
  • Publication number: 20150342487
    Abstract: Systems and methods for assessing hemodynamic status of a patient experiencing atrial tachyarrhythmia such as an atrial fibrillation (AF) episode are disclosed. A system can comprise an atrial tachyarrhythmia detection circuit configured to detect an AF episode, a hemodynamic sensor circuit configured to sense at least one hemodynamic signal, and a hemodynamic status analyzer circuit that can calculate one or more signal metrics using the sensed hemodynamic signal during the AF episode. The hemodynamic status analyzer circuit can categorize the hemodynamic status of the patient into one of two or more categorical hemodynamic status levels which indicate elevated hemodynamic impact of the detected AF episode. A user interface can provide to an end-user a presentation of the categorized hemodynamic status level during AF.
    Type: Application
    Filed: May 27, 2015
    Publication date: December 3, 2015
    Inventors: Pramodsingh Hirasingh Thakur, Ramesh Wariar, Qi An, Barun Maskara, Yi Zhang
  • Publication number: 20150343223
    Abstract: Systems and methods for treating atrial tachyarrhythmias such as atrial fibrillation (AF) are disclosed. By monitoring a patient's hemodynamic sensor response to a candidate AF therapy, the present systems and methods can be used to determine an individualized AF therapy leading to a desirable hemodynamic outcome. A medical system can include one or more programmable therapy circuits and a hemodynamic sensor circuit. The system includes a therapy selection circuit that automatically programs and sequentially delivers at least a first candidate therapy and a different second candidate therapy. By comparing the values of a hemodynamic parameter in response to or during the first candidate therapy to that in response to or during the second candidate therapy, a desired AF therapy can be determined as the candidate therapy that leads to faster or more significant hemodynamic recovery.
    Type: Application
    Filed: April 29, 2015
    Publication date: December 3, 2015
    Inventors: Pramodsingh Hirasingh Thakur, Ramesh Wariar, Barun Maskara, Qi An
  • Publication number: 20150342466
    Abstract: Systems and methods for detecting atrial tachyarrhythmias such as atrial fibrillation (AF) are disclosed. A medical system can sense a heart rate (HR) output and a hemodynamic status output. An AF detector circuit automatically determines a first detection criterion and a different second detection criterion. The first detection criterion can be more sensitive to the presence of the AF episode than the second detection criterion, and the second detection criterion can be more specific to the AF episode than the first detection criterion. The AF detector circuit detects an AF onset event using the first detection criterion and at least one of the heart rate output or the hemodynamic status output, and detects an AF termination event using the second detection criterion and at least one of the heart rate output or the hemodynamic status output.
    Type: Application
    Filed: April 28, 2015
    Publication date: December 3, 2015
    Inventors: Pramodsingh Hirasingh Thakur, Qi An, Barun Maskara
  • Patent number: 9186080
    Abstract: A method and system for mapping an anatomical structure includes sensing activation signals of intrinsic physiological activity with a plurality of mapping electrodes disposed in or near the anatomical structure. The activation signals are used to determine a dominant frequency for each electrode from which a wavefront vector for each electrode is determined based on a difference between the dominant frequency at a first electrode location and the dominant frequency at neighboring electrodes. An anatomical map is generated based on the determined wavefront vectors.
    Type: Grant
    Filed: May 7, 2014
    Date of Patent: November 17, 2015
    Assignee: Boston Scientific Scimed Inc.
    Inventors: Allan C. Shuros, Pramodsingh H. Thakur, Shibaji Shome, Barun Maskara, Shantha Arcot-Krishnamurthy, Sunipa Saha, Jacob Laughner
  • Patent number: 9180301
    Abstract: Stimulation energy can be provided to stimulate synchronous ventricular contractions. Interval information obtained from a cardiac electrical heart signal and a cardiac mechanical heart signal can be used to determine a right ventricular activation time. The interval information can provide a cardiac stimulation indication.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: November 10, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Barun Maskara, Qi An, Pramodsingh Hirasingh Thakur, Julie A. Thompson
  • Patent number: 9168382
    Abstract: A cardiac rhythm management system provides for cardiac pacing that is delivered to a target portion of conductive tissue in a heart, such as the His bundle. In various embodiments, the system is configured to verify capture of the target portion and provide for selective pacing of the target portion. In various embodiments, the system is configured to detect responses of the target portion and adjacent myocardial tissue to delivery of pacing pulses and use an outcome of the detection to verify selective capture of the target portion (i.e., without directly exciting the adjacent myocardial tissue.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: October 27, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Allan C. Shuros, Jiang Ding, Barun Maskara, Rodney W. Salo