Patents by Inventor Basab Bandyopadhyay

Basab Bandyopadhyay has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6090703
    Abstract: A interconnect structure is provided having a conductor with enhanced thickness. The conductor includes an upper portion and a lower portion, wherein the lower portion geometry is sufficient to increase the current-carrying capacity beyond that provided by the upper portion. The lower portion is formed by filling a trench within an upper dielectric region, and the upper portion is formed by selectively removing a conductive material from the upper dielectric surface except for regions directly above the lower portion. The upper and lower portions thereby form a conductor of enhanced cross-section which can be produced by modifying a via-etch mask, rather than having to reconfigure and/or move interconnect features formed by a metal mask.
    Type: Grant
    Filed: October 2, 1998
    Date of Patent: July 18, 2000
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Basab Bandyopadhyay, H. Jim Fulford, Jr., William S. Brennan, Fred N. Hause, Robert Dawson, Mark W. Michael
  • Patent number: 6091149
    Abstract: A fabrication process is provided that produces an air gap dielectric in which a multi-level interconnect structure is formed upon a temporary supporting material. The temporary material is subsequently dissolved away leaving behind an intralevel and an interlevel dielectric comprised of air. In one embodiment of the invention, a first interconnect level is formed on a barrier layer. A temporary support material is then formed over the first interconnect level and a second level of interconnect is formed on the temporary support material. Prior to formation of the second interconnect level, a plurality of pillar openings are formed in the temporary material and filled with a conductive material. In addition to providing a contact between the first and second level of interconnects, the pillars provide mechanical support for the second interconnect level. The temporary material is dissolved in a solution that attacks the temporary material but leaves the interconnect material and pillar material intact.
    Type: Grant
    Filed: February 18, 1999
    Date of Patent: July 18, 2000
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Fred N. Hause, Basab Bandyopadhyay, Robert Dawson, H. Jim Fulford, Jr., Mark W. Michael, William S. Brennan
  • Patent number: 6074927
    Abstract: A shallow trench isolation structure is formed which enables the growth of a high quality gate oxide at the trench edges and protects the field oxide from gouging during post-gate processing, such as during the local interconnect etch, thereby allowing the formation of high-quality implanted junctions. Embodiments include forming a photoresist mask directly on a pad oxide layer which, in turn, is formed on a main surface of a semiconductor substrate or an epitaxial layer on a semiconductor substrate. After masking, the substrate is etched to form a trench, an oxide liner is grown in the trench surface, and a polish stop layer is deposited in the trench on the oxide liner and on the pad oxide layer. The polish stop layer is then masked to the trench edges, and the polish stop in the trench is anisotropically etched, to remove the polish stop at the bottom of the trenches leaving a portion overlying the side surfaces and edges of the trench on the oxide liner.
    Type: Grant
    Filed: June 1, 1998
    Date of Patent: June 13, 2000
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Nick Kepler, Basab Bandyopadhyay, Olov Karlsson, Larry Wang, Effiong Ibok, Christopher F. Lyons
  • Patent number: 6049134
    Abstract: A photolithography mask derivation process is provided for improving the overall planarity of interlevel dielectric deposited upon conductors formed by the derived photolithography mask. The photolithography mask is derived such that non-operational conductors are spaced a minimum distance from each other and from operational conductors to present a regular spaced arrangement of conductors upon which a dielectric layer can be deposited and readily planarized using, for example, chemical-mechanical polishing techniques. The resulting interlevel dielectric upper surface is globally planarized to an even elevational level across the entire semiconductor topography. The operational conductors are dissimilar from non-operational conductors in that the operational conductors are connected within a circuit path of an operational integrated circuit. Non-operational conductors are not connected within the integrated circuit path and generally are floating or are connected to a power supply.
    Type: Grant
    Filed: January 29, 1998
    Date of Patent: April 11, 2000
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Mark W. Michael, Robert Dawson, Fred N. Hause, Basab Bandyopadhyay, H. Jim Fulford, Jr., William S. Brennan
  • Patent number: 6037671
    Abstract: Accurate photolighographic processing is achieved employing a stepper global alignment structure enabling formation thereon of a substantially transparent layer having a substantially planar upper surface. Embodiments include a set of global alignment marks comprising spaced apart trenches, each trench segmented into a plurality of narrow trenches spaced apart by uprights and forming a dummy topographical area of narrow trenches surrounding the set of alignment marks. The segmented trenches and the dummy topographical area effectively provide a substantially uniform topography enabling deposition of a transparent layer without steps and effective local planarization. Since the upper surface of the transparent layer is substantially planar, layers of material deposited on the transparent layer during subsequent processing also have a substantially planar upper surface, thereby enabling transmission of the signal produced by the alignment marks to the stepper with minimal distortion.
    Type: Grant
    Filed: November 3, 1998
    Date of Patent: March 14, 2000
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Nick Kepler, Olov Karlsson, Larry Wang, Basab Bandyopadhyay, Effiong Ibok, Christopher F. Lyons
  • Patent number: 6031289
    Abstract: An improved multilevel interconnect structure is provided. The interconnect structure includes several levels of conductors, wherein conductors on one level are staggered with respect to conductors on another level. In densely spaced interconnect areas, interposed conductors are drawn to dissimilar elevational levels to lessen the capacitive coupling between the interconnects. By staggering every other interconnect line in the densely patterned areas, the interconnects are capable of carrying a larger amount of current with minimal capacitive coupling therebetween.
    Type: Grant
    Filed: March 4, 1998
    Date of Patent: February 29, 2000
    Assignee: Advanced Micro Devices, Inc.
    Inventors: H. Jim Fulford, Jr., Basab Bandyopadhyay, Robert Dawson, Fred N. Hause, Mark W. Michael, William S. Brennan
  • Patent number: 5998293
    Abstract: An improved multilevel interconnect structure is provided. The interconnect structure includes pillars spaced from each other across a wafer. The pillars are placed between levels of interconnect or between an interconnect level and a semiconductor substrate. The pillars are spaced from each other by an air gap, such that each conductor within a level of interconnect is spaced by air from one another. Furthermore, each conductor within one level of interconnect is spaced by air from each conductor within another level of interconnect. Air gaps afford a smaller interlevel and intralevel capacitance within the multilevel interconnect structure, and a smaller parasitic capacitance value affords minimal propagation delay and cross-coupling noise of signals sent through the conductors.
    Type: Grant
    Filed: April 28, 1998
    Date of Patent: December 7, 1999
    Assignee: Advanced Micro Devcies, Inc.
    Inventors: Robert Dawson, Mark W. Michael, William S. Brennan, Basab Bandyopadhyay, H. Jim Fulford, Jr., Fred N. Hause
  • Patent number: 5970363
    Abstract: A shallow trench isolation structure is formed which enables the growth of a high quality gate oxide at the trench edges. Embodiments include forming a photoresist mask directly on a pad oxide layer which, in turn, is formed on a main surface of a semiconductor substrate or an epitaxial layer on a semiconductor substrate. After masking, the substrate is etched to form a trench, an oxide liner is grown in the trench surface, and a polish stop layer is deposited over the oxide liner and the pad oxide layer. The polish stop layer is then masked to the trench edges, and the polish stop in the trench etched away. The trench is then filled with an insulating material, the insulating material is planarized, and the polish stop is removed by etching. Thus, the oxide liner is allowed to grow on the trench edges without the restraint of a polish stop, resulting in a thick, rounded oxide on the trench edges. Additionally, no polish stop layer remains in the trench to cause unwanted electrical effects.
    Type: Grant
    Filed: December 18, 1997
    Date of Patent: October 19, 1999
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Nick Kepler, Olov Karlsson, Larry Wang, Basab Bandyopadhyay, Effiong Ibok, Christopher F. Lyons
  • Patent number: 5970362
    Abstract: An insulated trench isolation structure is formed in a semiconductor substrate omitting a barrier nitride polish stop layer, thereby simplifying the formation of the trench isolating structure, and enabling the substrate to be polished substantially flush with the trench fill. The planar trench fill-substrate interface avoids additional topography, thereby facilitating application of, and enhancing the accuracy of, photolithographic techniques in forming features with minimal dimensions.
    Type: Grant
    Filed: December 18, 1997
    Date of Patent: October 19, 1999
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Christopher F. Lyons, Basab Bandyopadhyay, Nick Kepler, Olov Karlsson, Larry Wang, Effiong Ibok
  • Patent number: 5968843
    Abstract: An improved method for planarizing an interlevel dielectric comprising two chemical mechanical polish steps. After an interlevel dielectric containing a topographical valley between a pair of topographical peaks is formed, the dielectric is chemically-mechanically polished in a first polish step at a first force using a first polish pad having a first rigidity to round the sharp dielectric corners or edges that exist at the transition between the peaks and valleys. After the first polish step has rounded the edges, a second polish step is performed with a second polish pad of second rigidity. The second polish pad is more rigid than the first polish pad and the second force is greater than the first. The second polish steps uses a high viscosity slurry to reduce slurry turnover in the regions proximate to the dielectric valleys thereby reducing the chemical etching in the valleys and improving the planarization efficiency.
    Type: Grant
    Filed: December 18, 1996
    Date of Patent: October 19, 1999
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Robert Dawson, H. Jim Fulford, Jr., Fred N. Hause, Basab Bandyopadhyay, Mark W. Michael, William S. Brennan
  • Patent number: 5953626
    Abstract: A fabrication process that produces an air gap dielectric in which a multi-level interconnect structure is formed upon a temporary supporting material. The temporary material is subsequently dissolved away leaving behind an intralevel and an interlevel dielectric comprised of air. In one embodiment of the invention, a first interconnect level is formed on a barrier layer. A temporary support material is then formed over the first interconnect level and a second level of interconnect is formed on the temporary support material. Prior to formation of the second interconnect level, a plurality of pillar openings are formed in the temporary material and filled with a conductive material. In addition to providing a contact between the first and second level of interconnects, the pillars provide mechanical support for the second interconnect level. The temporary material is dissolved in a solution that attacks the temporary material but leaves the interconnect material and pillar material intact.
    Type: Grant
    Filed: June 5, 1996
    Date of Patent: September 14, 1999
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Fred N. Hause, Basab Bandyopadhyay, Robert Dawson, H. Jim Fulford, Jr., Mark W. Michael, William S. Brennan
  • Patent number: 5930645
    Abstract: An insulated trench isolation structure is formed in a semiconductor substrate using a thin amorphous silicon or polysilicon polish stop layer by adding a reflectance compensation layer on the polish stop layer. As a result, the topological step between the main surface of the substrate and the uppermost surface of the trench fill is reduced, thereby facilitating the application and enhancing the accuracy of photolithographic techniques in forming features with minimal dimensions.
    Type: Grant
    Filed: December 18, 1997
    Date of Patent: July 27, 1999
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Christopher F. Lyons, Basab Bandyopadhyay, Nick Kepler, Olov Karlsson, Larry Wang, Effiong Ibok
  • Patent number: 5926713
    Abstract: An isolation technique is provided for improving the overall planarity of trench isolation regions relative to adjacent silicon mesas. The isolation process results in a spaced plurality of silicon risers formed in wide isolation regions. The space between silicon risers are ideally suited for optimal fill of a dielectric deposited across the semiconductor topography, i.e., across and between the silicon risers formed between active areas. The silicon risers, and optimally dimensioned trenches extending between the risers, enhance the planarity of the deposited dielectric. The deposited dielectric upper surface includes recesses of minimal elevational disparity, wherein the recesses are closely spaced in alignment directly above the trenches formed between silicon risers. The recesses can be readily removed by a chemical-mechanical polishing step with minimal deformity to the polishing pad, resulting in global planarization of the dielectric upper surface.
    Type: Grant
    Filed: September 4, 1997
    Date of Patent: July 20, 1999
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Fred N. Hause, Basab Bandyopadhyay, H. Jim Fulford, Jr., Robert Dawson, Mark W. Michael, William S. Brennan
  • Patent number: 5926717
    Abstract: A method for isolating a first active region from a second active region, both of which are configured within a semiconductor substrate. The method comprises forming a trench in the semiconductor substrate between said first active region and said second active region. A first dielectric layer is then formed on said trench and a polysilicon layer is deposited on said first dielectric layer. The polysilicon layer is then thermally oxidized to form a second dielectric layer. Preferably the first dielectric is a thermal oxide 40 to 500 angstroms in thickness consuming less than 200 angstroms of said first active region and said second active region. The polysilicon layer is preferably between 1000 to 2000 angstroms.
    Type: Grant
    Filed: December 10, 1996
    Date of Patent: July 20, 1999
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Mark W. Michael, Robert Dawson, Basab Bandyopadhyay, H. Jim Fulford, Jr., Fred N. Hause, William S. Brennan
  • Patent number: 5924008
    Abstract: An integrated circuit is provided having an improved interconnect structure. The interconnect structure includes a power-coupled local interconnect which is always retained at VDD or VSS (i.e., ground) level. The local interconnect resides a dielectric-spaced distance below critical runs of overlying interconnect. The powered local interconnect serves to sink noise transients from the critical conductors to ensure that circuits connected to the conductors do not inoperably function. Accordingly, the local interconnect extends along a substantial portion of the conductor length, and is either wider or narrower than the conductor under which it extends. The local interconnect can either be polysilicon, doped polysilicon, polycide, refractory metal silicide, or multi-level refractory metal.
    Type: Grant
    Filed: October 1, 1997
    Date of Patent: July 13, 1999
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Mark W. Michael, Robert Dawson, Basab Bandyopadhyay, H. Jim Fulford, Jr., Fred N. Hause, William S. Brennan
  • Patent number: 5899727
    Abstract: An isolation technique is provided for improving the overall planarity of isolation regions relative to adjacent active area silicon mesas. The isolation process results in a trench formed in field regions immediately adjacent the active regions. The trench, however, does not extend entirely across the field region. By preventing large area trenches, substantial dielectric fill material and the problems of subsequent planarization of that fill material is avoided. Accordingly, the present isolation technique does not require conventional fill dielectric normally associated with a shallow trench process. While it achieves the advantages of forming silicon mesas, the present process avoids having to rework dielectric surfaces in large area field regions using conventional sacrificial etchback, block masking and chemical-mechanical polishing. The improved isolation technique hereof utilizes trenches of minimal width etched into the silicon substrate at the periphery of field regions, leaving a field mesa.
    Type: Grant
    Filed: May 2, 1996
    Date of Patent: May 4, 1999
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Fred N. Hause, Basab Bandyopadhyay, H. Jim Fulford, Jr., Robert Dawson, Mark W. Michael, William S. Brennan
  • Patent number: 5894168
    Abstract: A photolithography mask derivation process is provided for improving the overall planarity of interlevel dielectric deposited upon conductors formed by the derived photolithography mask. The photolithography mask is derived such that non-operational conductors are spaced a minimum distance from each other and from operational conductors to present a regular spaced arrangement of conductors upon which a dielectric layer can be deposited and readily planarized using, for example, chemical-mechanical polishing techniques. The resulting interlevel dielectric upper surface is globally planarized to an even elevational level across the entire semiconductor topography. The operational conductors are dissimilar from non-operational conductors in that the operational conductors are connected within a circuit path of an operational integrated circuit. Non-operational conductors are not connected within the integrated circuit path and generally are floating or are connected to a power supply.
    Type: Grant
    Filed: October 2, 1997
    Date of Patent: April 13, 1999
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Mark W. Michael, Robert Dawson, Fred N. Hause, Basab Bandyopadhyay, H. Jim Fulford, Jr., William S. Brennan
  • Patent number: 5854131
    Abstract: An improved multilevel interconnect structure is provided. The interconnect structure includes several levels of conductors, wherein conductors on one level are staggered with respect to conductors on another level. Accordingly, a space between conductors on one level is directly above or directly below a conductor within another level. The staggered interconnect lines are advantageously used in densely spaced regions to reduce the interlevel and intralevel capacitance. Furthermore, an interlevel and an intralevel dielectric structure includes optimally placed low K dielectrics which exist in critical spaced areas to minimize capacitive coupling and propagation delay problems. The low K dielectric, according to one embodiment, includes a capping dielectric which is used to prevent corrosion on adjacent metallic conductors, and serves as an etch stop when conductors are patterned.
    Type: Grant
    Filed: June 5, 1996
    Date of Patent: December 29, 1998
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Robert Dawson, Mark W. Michael, Basab Bandyopadhyay, H. Jim Fulford Jr., Fred N. Hause, William S. Brennan
  • Patent number: 5854515
    Abstract: A interconnect structure is provided having a conductor with enhanced thickness. The conductor includes an upper portion and a lower portion, wherein the lower portion geometry is sufficient to increase the current-carrying capacity beyond that provided by the upper portion. The lower portion is formed by filling a trench within an upper dielectric region, and the upper portion is formed by selectively removing a conductive material from the upper dielectric surface except for regions directly above the lower portion. The upper and lower portions thereby form a conductor of enhanced cross-section which can be produced by modifying a via-etch mask, rather than having to reconfigure and/or move interconnect features formed by a metal mask.
    Type: Grant
    Filed: July 23, 1996
    Date of Patent: December 29, 1998
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Basab Bandyopadhyay, H. Jim Fulford, Jr., Robert Dawson, Fred N. Hause, Mark W. Michael, William S. Brennan
  • Patent number: 5851913
    Abstract: A multilevel interconnect structure is provided. The multilevel interconnect structure includes two, three or more levels of conductors formed according to at least two exemplary embodiments. According to one embodiment, the contact structure which links conductors on one level to an underlying level is formed by a single via etch step followed by a fill step separate from a fill step used in filling the via. In this embodiment, the via is filled with a conductive material which forms a plug separate from the material used in forming the interconnect. In another exemplary embodiment, the step used in filling the via can be the same as that used in forming the interconnect. In either instance, a via is formed through a first dielectric to underlying conductors. A second dielectric is patterned upon the first dielectric and serves to laterally bound the fill material used in producing the overlying interconnect.
    Type: Grant
    Filed: June 5, 1996
    Date of Patent: December 22, 1998
    Assignee: Advanced Micro Devices, Inc.
    Inventors: William S. Brennan, Robert Dawson, H. Jim Fulford, Jr., Fred N. Hause, Basab Bandyopadhyay, Mark W. Michael