Patents by Inventor Basak Ulker Karbeyaz

Basak Ulker Karbeyaz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200170587
    Abstract: Provided are one or more systems and/or techniques for mitigating motion artifacts in a computed tomography image of an anatomical object. Extended scan data is received and includes projections and backprojections acquired for parallel rays emitted by a radiation source at different angular locations within a first range of source angles. The projections and the backprojections are compared to identify differences between the projections and the backprojections at the different angular locations. Movement of the anatomical object during acquisition of the extended scan data at the different angular locations is quantified, and short scan data is identified. The short set includes a subset of the extended scan data acquired at different locations within a second range of source angles where the quantified movement of the anatomical object is less than a movement threshold. The computed tomography image of the anatomical object is reconstructed from the short scan data.
    Type: Application
    Filed: February 3, 2020
    Publication date: June 4, 2020
    Inventors: Alexander Zamyatin, Basak Ulker Karbeyaz
  • Patent number: 10575795
    Abstract: Provided are one or more systems and/or techniques for mitigating motion artifacts in a computed tomography image of an anatomical object. Extended scan data is received and includes projections and backprojections acquired for parallel rays emitted by a radiation source at different angular locations within a first range of source angles. The projections and the backprojections are compared to identify differences between the projections and the backprojections at the different angular locations. Movement of the anatomical object during acquisition of the extended scan data at the different angular locations is quantified, and short scan data is identified. The short set includes a subset of the extended scan data acquired at different locations within a second range of source angles where the quantified movement of the anatomical object is less than a movement threshold. The computed tomography image of the anatomical object is reconstructed from the short scan data.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: March 3, 2020
    Assignee: Analogic Corporation
    Inventors: Alexander Zamyatin, Basak Ulker Karbeyaz
  • Publication number: 20190374175
    Abstract: Provided are one or more systems and/or techniques for mitigating motion artifacts in a computed tomography image of an anatomical object. Extended scan data is received and includes projections and backprojections acquired for parallel rays emitted by a radiation source at different angular locations within a first range of source angles. The projections and the backprojections are compared to identify differences between the projections and the backprojections at the different angular locations. Movement of the anatomical object during acquisition of the extended scan data at the different angular locations is quantified, and short scan data is identified. The short set includes a subset of the extended scan data acquired at different locations within a second range of source angles where the quantified movement of the anatomical object is less than a movement threshold. The computed tomography image of the anatomical object is reconstructed from the short scan data.
    Type: Application
    Filed: January 18, 2018
    Publication date: December 12, 2019
    Applicant: Analogic Corporation
    Inventors: Alexander Zamyatin, Basak Ulker Karbeyaz
  • Patent number: 10388000
    Abstract: Among other things, one or more techniques and/or systems are described for processing images yielded from an examination via radiation to reduce visible noise in the images. After an image is reconstructed, a noise contribution to the image (e.g., an amount of noise in the image) is estimated to determine a target noise contribution for the image. The target noise contribution for the image may vary based upon, among other things, dose of radiation, aspects or properties of an object being imaged, etc. The image is subsequently filtered using one or more filtering techniques to generate a filtered image, and a noise contribution to the filtered image is determined. When the noise contribution to the filtered image satisfies the target noise contribution (e.g., a sufficient amount of noise has been filtered out of the image), the filtered image is combined with the reconstructed image to generate a blended image.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: August 20, 2019
    Assignee: Analogic Corporation
    Inventors: Basak Ulker Karbeyaz, Kevin Cheng, Charles Shaughnessy, David Rozas
  • Patent number: 10209205
    Abstract: Among other things, a tire inspection system and method are provided. A radiation source and a detector array are configured to rotate about an axis of rotation. During a first examination of a tire, the tire has a first orientation relative to the axis of rotation, and during a second examination, the tire has a second orientation relative to the axis of rotation. For example, between the first examination and the second examination, the tire is at least one of shifted with respect to the axis of rotation or rotated about a tire rotation axis (e.g., perpendicular to the axis of rotation) to change the orientation of the tire relative to the axis of rotation. In this manner, imagery of the tire may be developed, which can be inspected to identify irregularities, etc., in the tire, for example.
    Type: Grant
    Filed: April 29, 2014
    Date of Patent: February 19, 2019
    Assignee: Analogic Corporation
    Inventors: Charles H. Shaughnessy, Steven N. Urchuk, Basak Ulker Karbeyaz
  • Patent number: 10107766
    Abstract: Among other things, one or more techniques and/or systems are described for defining imaging modes and for operating a photon counting radiation imaging system. A set of imaging modes with different counting schemes may be defined such that counting schemes will count detection events of a set of radiation events in different manners. For example, a first counting scheme may count primary detection events in a primary counter and secondary detection events in a secondary counter. A second counting scheme may count primary and secondary detection events in the primary counter. A third counting scheme may merely count detection events occurring within a primary detector cell associated with the primary counter. A fourth counting scheme may combine energy of detection events into merged energy. A selected imaging mode may be applied to the photon counting radiation imaging system in order to achieve desired image scanning characteristics (e.g., spatial resolution, dose savings, spectral ability).
    Type: Grant
    Filed: January 15, 2015
    Date of Patent: October 23, 2018
    Assignee: Analogic Corporation
    Inventors: Doug Q. Abraham, Anton Deykoon, Basak Ulker Karbeyaz
  • Patent number: 9952333
    Abstract: Among other things, one or more techniques and/or systems are described for resetting an integration circuit (206) of a detector cell or an electronics arrangement (200) thereof. When a voltage signal output by the integration circuit (206) exceeds a specified threshold (e.g., indicating that a specified number of radiation photons have been detected), a charge injection circuit (208) is configured to inject charge into the integration circuit (206). The injected charge is typically opposite in polarity to stored charge that is stored by a capacitor (214) of the integration circuit (206) and is configured to counteract the stored charge. In this way, a voltage potential at the capacitor (214) decreases, causing the voltage signal output by the integration circuit (206) to decrease.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: April 24, 2018
    Assignee: ANALOGIC CORPORATION
    Inventors: Douglas Q. Abraham, Basak Ulker Karbeyaz
  • Patent number: 9846244
    Abstract: One or more techniques and/or systems are described for addressing (e.g., during calibration) pixel-by-pixel variations in an image modality that utilizes photon counting techniques, such as by adjusting a number of photons detected by certain pixels (e.g., redistributing or reallocating detected photons among pixels). Such variations may cause an effective area of one or more pixels of a detector array to be larger than the effective area of other pixels, resulting in more photons being counted by some pixels than others, which can degrade resulting images. Accordingly, photons are redistributed as provided herein so that, when exposed to substantially uniform radiation, photon counts of neighboring pixels are substantially equal, statistical noise among neighboring pixels is substantially equal, and a signal-to-noise ratio among neighboring pixels is substantially equal.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: December 19, 2017
    Assignee: ANALOGIC CORPORATION
    Inventors: Doug Abraham, Basak Ulker Karbeyaz, Olivier Tousignant
  • Publication number: 20170249723
    Abstract: Among other things, one or more techniques and/or systems are described for processing images yielded from an examination via radiation to reduce visible noise in the images. After an image is reconstructed, a noise contribution to the image (e.g., an amount of noise in the image) is estimated to determine a target noise contribution for the image. The target noise contribution for the image may vary based upon, among other things, dose of radiation, aspects or properties of an object being imaged, etc. The image is subsequently filtered using one or more filtering techniques to generate a filtered image, and a noise contribution to the filtered image is determined. When the noise contribution to the filtered image satisfies the target noise contribution (e.g., a sufficient amount of noise has been filtered out of the image), the filtered image is combined with the reconstructed image to generate a blended image.
    Type: Application
    Filed: September 15, 2014
    Publication date: August 31, 2017
    Inventors: Basak Ulker Karbeyaz, Kevin Cheng, Charles Shaughnessy, David Rozas
  • Patent number: 9645260
    Abstract: Among other things, one or more techniques and/or systems for counting detection events via a photon counting detector array is provided. A first instance where an amplitude of an electrical signal exceeds an event threshold is detected. The first instance is generated responsive to a first detection event at a detector cell. An event counter is disabled from counting other detection events at the detector cell for a first blocking interval. At a conclusion of the first blocking interval, the amplitude of the electrical signal is determined. Responsive to determining that the amplitude of the electrical signal is below the event threshold, an adjustment is made to an event count based upon the first detection event. Responsive to determining that the amplitude of the electrical signal exceeds the event threshold, the event counter is disabled from counting other detection events at the detector cell for a second blocking interval.
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: May 9, 2017
    Assignee: ANALOGIC CORPORATION
    Inventors: Doug Q. Abraham, Basak Ulker Karbeyaz, David Rozas
  • Publication number: 20170059496
    Abstract: Among other things, a tire inspection system (100) and method are provided. A radiation source (116) and a detector array (118) are configured to rotate about an axis of rotation. During a first examination of a tire (104), the tire (104) has a first orientation relative to the axis of rotation, and during a second examination, the tire (104) has a second orientation relative to the axis of rotation. For example, between the first examination and the second examination, the tire (104) is at least one of shifted with respect to the axis of rotation or rotated about a tire rotation axis (e.g., perpendicular to the axis of rotation) to change the orientation of the tire relative to the axis of rotation. Such rotation and translation of the tire (104) are carried out by using a conveyer belt (114) and a robotic arm (602). In this manner, imagery of the tire (104) may be developed, which can be inspected to identify irregularities, etc. in the tire (104), for example.
    Type: Application
    Filed: April 29, 2014
    Publication date: March 2, 2017
    Inventors: Charles H. Shaughnessy, Steven N. Urchuk, Basak Ulker Karbeyaz
  • Publication number: 20160238717
    Abstract: Among other things, one or more techniques and/or systems are described for resetting an integration circuit (206) of a detector cell or an electronics arrangement (200) thereof. When a voltage signal output by the integration circuit (206) exceeds a specified threshold (e.g., indicating that a specified number of radiation photons have been detected), a charge injection circuit (208) is configured to inject charge into the integration circuit (206). The injected charge is typically opposite in polarity to stored charge that is stored by a capacitor (214) of the integration circuit (206) and is configured to counteract the stored charge. In this way, a voltage potential at the capacitor (214) decreases, causing the voltage signal output by the integration circuit (206) to decrease.
    Type: Application
    Filed: September 25, 2013
    Publication date: August 18, 2016
    Inventors: Douglas Q. ABRAHAM, Basak Ulker KARBEYAZ
  • Publication number: 20160209520
    Abstract: Among other things, one or more techniques and/or systems for counting detection events via a photon counting detector array is provided. A first instance where an amplitude of an electrical signal exceeds an event threshold is detected. The first instance is generated responsive to a first detection event at a detector cell. An event counter is disabled from counting other detection events at the detector cell for a first blocking interval. At a conclusion of the first blocking interval, the amplitude of the electrical signal is determined Responsive to determining that the amplitude of the electrical signal is below the event threshold, an adjustment is made to an event count based upon the first detection event. Responsive to determining that the amplitude of the electrical signal exceeds the event threshold, the event counter is disabled from counting other detection events at the detector cell for a second blocking interval.
    Type: Application
    Filed: January 21, 2015
    Publication date: July 21, 2016
    Inventors: Doug Q. Abraham, Basak Ulker Karbeyaz, David Rozas
  • Publication number: 20160209338
    Abstract: Among other things, one or more techniques and/or systems are described for defining imaging modes and for operating a photon counting radiation imaging system. A set of imaging modes with different counting schemes may be defined such that counting schemes will count detection events of a set of radiation events in different manners. For example, a first counting scheme may count primary detection events in a primary counter and secondary detection events in a secondary counter. A second counting scheme may count primary and secondary detection events in the primary counter. A third counting scheme may merely count detection events occurring within the primary detector cell associated with the primary counter. A fourth counting scheme may combine energy of detection events into merged energy. A selected imaging mode may be applied to the photon counting radiation imaging system in order to achieve desired image scanning characteristics (e.g., spatial resolution, dose savings, spectral ability).
    Type: Application
    Filed: January 15, 2015
    Publication date: July 21, 2016
    Inventors: Doug Q. Abraham, Anton Deykoon, Basak Ulker Karbeyaz
  • Patent number: 9310490
    Abstract: Among other things, one or more techniques and/or systems are described for counting detection events on a detector cell of a photon counting detector array. An electronics arrangement of the detector cell comprises a digital discriminator which is configured according to an impulse response of the detector cell or, more particularly, an impulse response of a radiation detection element of the detector cell (e.g., where the radiation detection element is configured to convert energy of the radiation photon into electrical charge). The digital discriminator is configured to analyze a digital representation of a voltage signal of the detector cell and to compare a result of the analysis to one or more metrics derived based upon the impulse response of the detector cell to identify voltage pulses of the voltage signal that are indicative of detection events.
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: April 12, 2016
    Assignee: Analogic Corporation
    Inventors: Douglas Q. Abraham, Basak Ulker Karbeyaz
  • Patent number: 9095259
    Abstract: A method and system are provided for generating high resolution CT images. The NSR# method improves on the AMPR method, by increasing the in-plane image resolution of CT scanners, in the helical scanning mode. The provided method uses the quarter detector offset and interleaving of complementary data to achieve in plane image resolution that is similar to the high resolution axial scanning mode utilizing quarter detector offset and interleaving. The method includes several ways of choosing the data to be interleaved, like NSR# with two planes, NSR# with 3 planes, NSR# with multiple planes. The interleaved data are used to create high resolution tilted slices. The NSR# method optimizes the untilting filter to create a mix of high and low resolution tilted slices to achieve the desired in-plane image resolution-image artifact balance required for the imaging task. In one embodiment in the untilting process one may use only high resolution tilted slices, for maximum resolution benefit.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: August 4, 2015
    Assignee: Analogic Corporation
    Inventors: Aleksander Roshi, Basak Ulker Karbeyaz, David Rozas
  • Publication number: 20150069255
    Abstract: Among other things, one or more techniques and/or systems are described for counting detection events on a detector cell of a photon counting detector array. An electronics arrangement of the detector cell comprises a digital discriminator which is configured according to an impulse response of the detector cell or, more particularly, an impulse response of a radiation detection element of the detector cell (e.g., where the radiation detection element is configured to convert energy of the radiation photon into electrical charge). The digital discriminator is configured to analyze a digital representation of a voltage signal of the detector cell and to compare a result of the analysis to one or more metrics derived based upon the impulse response of the detector cell to identify voltage pulses of the voltage signal that are indicative of detection events.
    Type: Application
    Filed: September 6, 2013
    Publication date: March 12, 2015
    Applicant: Analogic Corporation
    Inventors: Douglas Q. Abraham, Basak Ulker Karbeyaz
  • Publication number: 20140326894
    Abstract: One or more techniques and/or systems are described for addressing (e.g., during calibration) pixel-by-pixel variations in an image modality that utilizes photon counting techniques, such as by adjusting a number of photons detected by certain pixels (e.g., redistributing or reallocating detected photons among pixels). Such variations may cause an effective area of one or more pixels of a detector array to be larger than the effective area of other pixels, resulting in more photons being counted by some pixels than others, which can degrade resulting images. Accordingly, photons are redistributed as provided herein so that, when exposed to substantially uniform radiation, photon counts of neighboring pixels are substantially equal, statistical noise among neighboring pixels is substantially equal, and a signal-to-noise ratio among neighboring pixels is substantially equal.
    Type: Application
    Filed: September 30, 2011
    Publication date: November 6, 2014
    Inventors: Doug Abraham, Basak Ulker Karbeyaz, Olivier Tousignant
  • Publication number: 20120294415
    Abstract: A method and system are provided for generating high resolution CT images. The NSR# method improves on the AMPR method, by increasing the in-plane image resolution of CT scanners, in the helical scanning mode. The provided method uses the quarter detector offset and interleaving of complementary data to achieve in plane image resolution that is similar to the high resolution axial scanning mode utilizing quarter detector offset and interleaving. The method includes several ways of choosing the data to be interleaved, like NSR# with two planes, NSR# with 3 planes, NSR# with multiple planes. The interleaved data are used to create high resolution tilted slices. The NSR# method optimizes the untilting filter to create a mix of high and low resolution tilted slices to achieve the desired in-plane image resolution-image artifact balance required for the imaging task. In one embodiment in the untilting process one may use only high resolution tilted slices, for maximum resolution benefit.
    Type: Application
    Filed: December 4, 2009
    Publication date: November 22, 2012
    Applicant: ANALOGIC CORPORATION
    Inventors: Aleksander Roshi, Basak Ulker Karbeyaz, David Rozas
  • Patent number: 7724866
    Abstract: A method of and a system for variable pitch CT scanning for baggage screening and variable pitch image reconstruction are disclosed.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: May 25, 2010
    Assignee: Analogic Corporation
    Inventors: Ram Naidu, Basak Ulker Karbeyaz, Zhengrong Ying, Sergey Simanovsky, Matthew Hirsch, David Schafer, Carl R. Crawford