Patents by Inventor Bassam Hallal

Bassam Hallal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220178818
    Abstract: An apparatus includes a spectrometer. A housing is attached to a substrate and defines an illumination channel and a receiving channel. The illumination channel includes an illumination source mounted on the substrate and operable to produce light in a particular part of the spectrum. A light pipe is disposed over the illumination source so as to direct light from the illumination source out of the illumination channel toward a target. The receiving channel includes a sensor chip mounted on the substrate. The sensor chip includes light sensitive elements, each of which is selectively sensitive to a respective region of the particular part of the spectrum. The sensor chip further includes an electronic control unit operable to analyze signals from the light sensitive elements.
    Type: Application
    Filed: April 23, 2020
    Publication date: June 9, 2022
    Inventors: Elisa Parola, Bassam Hallal
  • Publication number: 20210318220
    Abstract: A particulate matter sensor module includes a light source and a light detector mounted on a substrate. A housing is attached to the substrate and includes first and second sections attached to one another in a stack over the substrate such that the first section is disposed between the substrate and the second section. The first and second sections, in combination, define a light reflection chamber, a fluid flow conduit, a particle-light interaction chamber, and a light trap chamber. The first section has a first aperture through which light emitted by the light source can pass to a reflective surface within the light reflection chamber. The reflective surface is configured to reflect the light toward the particle-light interaction chamber where the light can interact with particles in a fluid flowing in the fluid flow conduit.
    Type: Application
    Filed: December 13, 2018
    Publication date: October 14, 2021
    Inventors: Harald Etschmaier, Bassam Hallal, Elisa Parola, Georg Roehrer
  • Patent number: 11073642
    Abstract: A method for manufacturing an optical device comprising providing a plurality of initials bars each having a first side face presented with a first optical component arrangement; positioning the initial bars in a row with their first side faces facing a neighboring one of the initial bars; fixing the initial bars to obtain a bar arrangement; obtaining prism bars by segmenting the bar arrangement by at least one of the steps: conducting a plurality of cuts so that each prism bar comprises a portion of at least two different ones of the initial bars, separating the bar arrangement into sections along cut lines or by creating cut faces at an angle with initial-bar directions; dividing the first optical component arrangement for obtaining a plurality of passive optical components, wherein each prism bar comprises one or more passive optical components comprising a first reflective face each which is of non-planar shape; segmenting prism bars into parts.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: July 27, 2021
    Assignee: ams Sensors Singapore Pte. Ltd.
    Inventors: Markus Rossi, Hartmut Rudmann, Bassam Hallal
  • Patent number: 11067446
    Abstract: Compact spectrometer modules include an illumination channel and a detection channel. The illumination channel includes an illumination source operable to generate a broad spectrum of electromagnetic radiation. The detection channel includes an illumination detector and a Fabry-Perot component. The Fabry-Perot component is operable to pass a narrow spectrum of wavelengths to the illumination detector. Further, the Fabry-Perot component can be actuatable such that the Fabry-Perot component is operable to pass a plurality of narrow spectrums of wavelengths to the illumination detector.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: July 20, 2021
    Assignee: ams Sensors Singapore Pte. Ltd.
    Inventors: Peter Roentgen, Kotaro Ishizaki, Camilla Camarri, Markus Rossi, Elisa Parola, Bassam Hallal
  • Publication number: 20210014429
    Abstract: Image sensor modules include primary high-resolution imagers and secondary imagers. For example, an image sensor module may include a semiconductor chip including photosensitive regions defining, respectively, a primary camera and a secondary camera. The image sensor module may include an optical assembly that does not substantially obstruct the field-of-view of the secondary camera. Some modules include multiple secondary cameras that have a field-of-view at least as large as the field-of-view of the primary camera. Various features are described to facilitate acquisition of signals that can be used to calculate depth information.
    Type: Application
    Filed: September 4, 2020
    Publication date: January 14, 2021
    Inventors: Jukka Alasirnio, Tobias Senn, Ohad Meitav, Moshe Doron, Alireza Yasan, Mario Cesana, Florin Cutu, Hartmut Rudmann, Markus Rossi, Peter Roentgen, Daniel Perez Calero, Bassam Hallal, Jens Geiger
  • Publication number: 20200319321
    Abstract: An optoelectronic module including a light emitter to generate light to be emitted from the module; a plurality of spatially distributed light sensitive elements arranged to detect light from the emitter that is reflected by an object outside the module; and one or more dedicated spurious-reflection detection pixels.
    Type: Application
    Filed: June 8, 2020
    Publication date: October 8, 2020
    Inventors: Jens Kubacki, Jim Lewis, Miguel Bruno Vaello Paños, Michael Lehmann, Stephan Beer, Bernhard Buettgen, Daniel Pérez Calero, Bassam Hallal
  • Publication number: 20200319320
    Abstract: An optoelectronic module including a light emitter to generate light to be emitted from the module, a plurality of spatially distributed light sensitive elements arranged to detect light from the emitter that is reflected by an object outside the module, and one or more dedicated spurious-reflection detection pixels.
    Type: Application
    Filed: June 8, 2020
    Publication date: October 8, 2020
    Inventors: Jens Kubacki, Jim Lewis, Miguel Bruno Vaello Paños, Michael Lehmann, Stephan Beer, Bernhard Buettgen, Daniel Pérez Calero, Bassam Hallal
  • Patent number: 10771714
    Abstract: Image sensor modules include primary high-resolution imagers and secondary imagers. For example, an image sensor module may include a semiconductor chip including photosensitive regions defining, respectively, a primary camera and a secondary camera. The image sensor module may include an optical assembly that does not substantially obstruct the field-of-view of the secondary camera. Some modules include multiple secondary cameras that have a field-of-view at least as large as the field-of-view of the primary camera. Various features are described to facilitate acquisition of signals that can be used to calculate depth information.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: September 8, 2020
    Assignee: ams Sensors Singapore Pte. Ltd.
    Inventors: Jukka Alasirniö, Tobias Senn, Ohad Meitav, Moshe Doron, Alireza Yasan, Mario Cesana, Florin Cutu, Hartmut Rudmann, Markus Rossi, Peter Roentgen, Daniel Perez Calero, Bassam Hallal, Jens Geiger
  • Patent number: 10705192
    Abstract: Optoelectronic modules (100) are operable to distinguish between signals indicative of reflections from an object of interest and signals indicative of a spurious reflection. Various modules are operable to recognize spurious reflections by means of dedicated spurious-reflection detection pixels (126) and, in some cases, also to compensate for errors caused by spurious reflections.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: July 7, 2020
    Assignee: ams Sensors Singapore Pte. Ltd.
    Inventors: Jens Kubacki, Jim Lewis, Miguel Bruno Vaello Paños, Michael Lehmann, Stephan Beer, Bernhard Buettgen, Daniel Pérez Calero, Bassam Hallal
  • Publication number: 20200182695
    Abstract: Compact spectrometer modules include an illumination channel and a detection channel. The illumination channel includes an illumination source operable to generate a broad spectrum of electromagnetic radiation. The detection channel includes an illumination detector and a Fabry-Perot component. The Fabry-Perot component is operable to pass a narrow spectrum of wavelengths to the illumination detector. Further, the Fabry-Perot component can be actuatable such that the Fabry- Perot component is operable to pass a plurality of narrow spectrums of wavelengths to the illumination detector.
    Type: Application
    Filed: June 18, 2018
    Publication date: June 11, 2020
    Inventors: Peter Roentgen, Kotaro Ishizaki, Camilla Camarri, Markus Rossi, Elisa Parola, Bassam Hallal
  • Patent number: 10547385
    Abstract: An optoelectronic module includes a transceiver operable to transmit data optically. The transceiver includes a light emitter to emit light from the module, and a light detector to detect light entering the module. The light detector is disposed at a rotationally symmetric position with respect to a central axis of the module. Such modules can help facilitate the exchange of data optically between two devices.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: January 28, 2020
    Assignee: AMS SENSORS SINGAPORE PTE. LTD.
    Inventors: Bassam Hallal, Hartmut Rudmann, Mario Cesana, Nicole Ebentheuer
  • Publication number: 20190383979
    Abstract: A method for manufacturing an optical device comprising providing a plurality of initials bars each having a first side face presented with a first optical component arrangement; positioning the initial bars in a row with their first side faces facing a neighboring one of the initial bars; fixing the initial bars to obtain a bar arrangement; obtaining prism bars by segmenting the bar arrangement by at least one of the steps: conducting a plurality of cuts so that each prism bar comprises a portion of at least two different ones of the initial bars, separating the bar arrangement into sections along cut lines or by creating cut faces at an angle with initial-bar directions; dividing the first optical component arrangement for obtaining a plurality of passive optical components, wherein each prism bar comprises one or more passive optical components comprising a first reflective face each which is of non-planar shape; segmenting prism bars into parts.
    Type: Application
    Filed: September 15, 2017
    Publication date: December 19, 2019
    Inventors: Markus Rossi, Hartmut Rudmann, Bassam Hallal
  • Patent number: 10509147
    Abstract: An apparatus for producing structured light comprises a first optical arrangement which comprises a microlens array (L1) comprising a multitude of transmissive or reflective microlenses (2) which are regularly arranged at a lens pitch P and an illumination unit for illuminating the microlens array. The illumination unit comprises an array (S1) of light sources (1) for emitting light of a wavelength L each and having an aperture each, wherein the apertures are located in a common emission plane which is located at a distance D from the microlens array. For the lens pitch P, the distance D and the wavelength L, the following equation applies P2=2LD/N, wherein N is an integer with N?1. High-contrast high-intensity light patterns can be produced. Devices comprising such apparatuses can be used for depth mapping.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: December 17, 2019
    Assignee: AMS SENSORS SINGAPORE PTE. LTD
    Inventors: Markus Rossi, Hans Peter Herzig, Philipp Mueller, Ali Naqavi, Daniel Infante Gomez, Moshe Doron, Matthias Gloor, Alireza Yasan, Hartmut Rudmann, Martin Lukas Balimann, Mai-Lan Elodie Boytard, Bassam Hallal, Daniel Pérez Calero, Julien Boucart, Hendrik Volkerink
  • Patent number: 10359505
    Abstract: The present disclosure describes optical imaging and optical detection modules that include sensors such as time-of-flight (TOF) sensors. Various implementations are described that, in some instances, can help reduce the amount of optical cross-talk between active detection pixels and reference pixels and/or can facilitate the ability of the sensor to determine an accurate phase difference to be used, for example, in distance calculations.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: July 23, 2019
    Assignee: ams Sensors Singapore Pte. Ltd.
    Inventors: Bernhard Buettgen, Miguel Bruno Vaello Paños, Stephan Beer, Michael Lehmann, Daniel Pérez Calero, Sophie Godé, Bassam Hallal
  • Patent number: 10317254
    Abstract: Optical encoding systems include a generalized cylindrical code scale having one or more regions with different light reflective properties. In an example process, a code scale can be created by coating an elongated generalized cylinder with one or more different layers of materials having different light reflective properties. Portions of these layers can be removed selectively in order to expose a particular overlying material and create a particular pattern of features having different optical characteristics (e.g., absorbing, specularly reflecting, diffusely reflecting).
    Type: Grant
    Filed: March 18, 2015
    Date of Patent: June 11, 2019
    Assignee: ams Sensors Singapore Pte. Ltd.
    Inventors: Jens Geiger, Nicola Spring, Robert Lenart, Bassam Hallal, Hakan Karpuz
  • Publication number: 20190049097
    Abstract: The illumination module for emitting light (5) can operate in at least two different modes, wherein in each of the modes, the emitted light (5) has a different light distribution. The module has a mode selector (10) for selecting the mode in which the module operates, and it has an optical arrangement. The arrangement includes—a microlens array (LL1) with a multitude of transmissive or reflective microlenses (2) which are regularly arranged at a lens pitch P (P1);—an illuminating unit for illuminating the microlens array (LL1). The illuminating unit includes a first array of light sources (S1) operable to emit light of a first wavelength L1 each and having an aperture each. The apertures are located in a common emission plane which is located at a distance D (D1) from the microlens array (LL1). In a first one of the modes, for the lens pitch P, the distance D and the wavelength L1 applies P2=2·L1·D/N wherein N is an integer with N?1.
    Type: Application
    Filed: January 24, 2017
    Publication date: February 14, 2019
    Inventors: Markus Rossi, Martin Lukas Balimann, Mai-Lan Elodie Boytard, Bassam Hallal, Daniel Pérez Calero, Julien Boucart, Hendrik Volkerink
  • Publication number: 20180267214
    Abstract: An apparatus for producing structured light comprises a first optical arrangement which comprises a microlens array (L1) comprising a multitude of transmissive or reflective microlenses (2) which are regularly arranged at a lens pitch P and an illumination unit for illuminating the microlens array. The illumination unit comprises an array (S1) of light sources (1) for emitting light of a wavelength L each and having an aperture each, wherein the apertures are located in a common emission plane which is located at a distance D from the microlens array. For the lens pitch P, the distance D and the wavelength L, the following equation applies P2=2LD/N, wherein N is an integer with N?1. High-contrast high-intensity light patterns can be produced. Devices comprising such apparatuses can be used for depth mapping.
    Type: Application
    Filed: January 26, 2016
    Publication date: September 20, 2018
    Inventors: Markus Rossi, Hans Peter Herzig, Philipp Mueller, Ali Naqavi, Daniel Infante Gomez, Moshe Doron, Matthias Gloor, Alireza Yasan, Hartmut Rudmann, Martin Lukas Balimann, Mai-Lan Elodie Boytard, Bassam Hallal, Daniel Pérez Calero, Julien Boucart, Hendrik Volkerink
  • Publication number: 20180172483
    Abstract: Optical encoding systems include a generalized cylindrical code scale having one or more regions with different light reflective properties. In an example process, a code scale can be created by coating an elongated generalized cylinder with one or more different layers of materials having different light reflective properties. Portions of these layers can be removed selectively in order to expose a particular overlying material and create a particular pattern of features having different optical characteristics (e.g., absorbing, specularly reflecting, diffusely reflecting).
    Type: Application
    Filed: March 18, 2015
    Publication date: June 21, 2018
    Inventors: Jens GEIGER, Nicola SPRING, Robert LENART, Bassam HALLAL, Hakan KARPUZ
  • Publication number: 20180124327
    Abstract: Image sensor modules include primary high-resolution imagers and secondary imagers. For example, an image sensor module may include a semiconductor chip including photosensitive regions defining, respectively, a primary camera and a secondary camera. The image sensor module may include an optical assembly that does not substantially obstruct the field-of-view of the secondary camera. Some modules include multiple secondary cameras that have a field-of-view at least as large as the field-of-view of the primary camera. Various features are described to facilitate acquisition of signals that can be used to calculate depth information.
    Type: Application
    Filed: February 23, 2015
    Publication date: May 3, 2018
    Inventors: Jukka Alasirnio, Tobias Senn, Ohad Meitav, Moshe Doron, Alireza Yasan, Mario Cesana, Florin Cutu, Hartmut Rudmann, Markus Rossi, Peter Roentgen, Daniel Perez Calero, Bassam Hallal, Jens Geiger
  • Patent number: 9746557
    Abstract: The present disclosure describes proximity sensor modules that include a time-of-flight (TOF) sensor. The module can include a plurality of chambers corresponding, respectively, to a light emission channel and a light detection channel. The channels can be optically separated from one another such that light from a light emitter element in the light emission chamber does not impinge directly on light sensitive elements of the TOF sensor in the light detection chamber. To achieve a module with a relatively small footprint, some parts of the TOF sensor can be located within the light emission chamber.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: August 29, 2017
    Assignee: Heptagon Micro Optics Pte. Ltd.
    Inventors: Camilla Camarri, Jonathan Hobbis, Bassam Hallal