Patents by Inventor Bastiaan Driehuys

Bastiaan Driehuys has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20020035836
    Abstract: Methods of collecting, thawing, and extending the useful polarized life of frozen polarized gases include heating a portion of the flow path and/or directly liquefying the frozen gas during thawing. A polarized noble gas product with an extended polarized life product is also included. Associated apparatus such as an accumulator and heating jacket for collecting, storing, and transporting polarized noble gases include a secondary flow channel which provides heat to a portion of the collection path during accumulation and during thawing.
    Type: Application
    Filed: September 17, 2001
    Publication date: March 28, 2002
    Inventors: Bastiaan Driehuys, David Zollinger, Daniel Deaton, K. C. Hasson, Alan Langhorn
  • Publication number: 20020037251
    Abstract: An in vivo non-invasive method for detecting and/or diagnosing a pathological condition using hyperpolarized 129Xe spectroscopy is disclosed. Generally stated, the method includes determining the magnitude of spectral peaks which represent particular chemical shifts and comparing the observed magnitudes to those of healthy individuals. Preferably, the method includes subtracting substantial backgrounds and accounting for secondary conditions such as the polarization of hyperpolarized gas administered. Additionally, a quantitative analysis of hyperpolarized 129Xe spectra advantageously allows a physician to establish the extent of disease progression. Advantageously, this method can be used regardless of the method of hyperpolarized 129Xe administration.
    Type: Application
    Filed: July 12, 2001
    Publication date: March 28, 2002
    Inventor: Bastiaan Driehuys
  • Publication number: 20020029586
    Abstract: Hyperpolarizers which produce hyperpolarized noble gases include one or more on-board NMR monitoring coils configured to monitor the polarization level of the hyperpolarized gas at various production points in the polarized gas production cycle. A dual symmetry NMR coil is positioned adjacent the optical pumping cell and is in fluid communication with a secondary reservoir in fluid communication with the polarized gas dispensing or exit flow path. This can measure the post-thaw polarization of the gas “on-board” the polarizer. Alternately or additionally, a NMR monitoring coil is assembled to the exit port portion of tie optical pumping cell to give a more reliable indication of the polarization level of the gas as it flows out of the gas optical pumping cell. Another NMR monitoring coil can be positioned in a cryogenic bath adjacent a quantity of frozen polarized 129Xe to determine the polarization level of the frozen gas.
    Type: Application
    Filed: August 23, 2001
    Publication date: March 14, 2002
    Inventor: Bastiaan Driehuys
  • Patent number: 6346229
    Abstract: MR spectroscopy and imaging method for imaging pulmonary and cardiac vasculature and the cardiac region and evaluating blood flow or circulatory deficits use dissolved phase polarized 129Xe gas and large flip angle excitation pulses. Pulmonary and cardiac vasculature MRI images are obtained by delivering gas to a patient via inhalation such as with a breath-hold delivery-procedure, exciting the dissolved phase gas with a large flip angle pulse, and generating a corresponding image. Preferably, the image is obtained using multi-echo imaging techniques. Blood flow is quantified using low field MR spectroscopy and an RF excitation pulse with a frequency which corresponds to the resonance of the dissolved phase 129Xe.
    Type: Grant
    Filed: March 17, 1999
    Date of Patent: February 12, 2002
    Assignee: Medi-Physics, Inc.
    Inventors: Bastiaan Driehuys, Kenton Christopher Hasson, Paul Lev Bogorad
  • Publication number: 20020006382
    Abstract: A method of screening for pulmonary embolism uses gaseous phase polarized 129Xe which is injected directly into the vasculature of a subject. The gaseous 129Xe can be delivered in a controlled manner such that the gas substantially dissolves into the vasculature proximate to the injection site. Alternatively, the gas can be injected such that it remains as a gas in the bloodstream for a period of time (such as about 8-29 seconds). The injectable formulation of polarized 129Xe gas is presented in small quantities of (preferably isotopically enriched) hyperpolarized 129Xe and can provide high-quality vasculature MRI images or NMR spectroscopic signals with clinically useful signal resolution or intensity. One method injects the polarized 129Xe as a gas into a vein and also directs another quantity of polarized gas into the subject via inhalation. In this embodiment, the perfusion uptake allows arterial signal information and the injection (venous side) allows venous signal information.
    Type: Application
    Filed: March 12, 2001
    Publication date: January 17, 2002
    Inventors: Bastiaan Driehuys, Dennis Fujii, James R. Brookeman, Klaus D. Hagspiel
  • Publication number: 20010051132
    Abstract: Methods for increasing the T1 of injectable microbubble formulations of hyperpolarized 3He include the step of introducing the hyperpolarized 3He to a quantity of microbubbles held in a chamber and increasing the pressure therein to facilitate the movement or loading of the 3He into the microbubbles. Subsequently, a limited quantity of carrier liquid or a carrier liquid solution alone, or pre-mixed with 3He, can be introduced to the microbubble/3He in the chamber to inhibit the tendency of the 3He to leach out of the bubble. Related pharmaceutical products and associated containers as well as an evacuation based method for rapid mixing and delivery of the bubbles and the 3He is also disclosed. An additional method for dissolving 129Xe gas by using bubbles as an accelerant is also described.
    Type: Application
    Filed: June 28, 2001
    Publication date: December 13, 2001
    Inventor: Bastiaan Driehuys
  • Patent number: 6305190
    Abstract: Methods of collecting, thawing, and extending the useful polarized life of frozen polarized gases include heating a portion of the flow path and/or directly liquefying the frozen gas during thawing. A polarized noble gas product with an extended polarized life product is also included. Associated apparatus such as an accumulator and heating jacket for collecting, storing, and transporting polarized noble gases include a secondary flow channel which provides heat to a portion of the collection path during accumulation and during thawing.
    Type: Grant
    Filed: November 14, 2000
    Date of Patent: October 23, 2001
    Assignee: Medi-Physics, Inc.
    Inventors: Bastiaan Driehuys, David Zollinger, Daniel Deaton, K. C. Hasson, Alan Langhorn
  • Publication number: 20010029739
    Abstract: Methods of extracting and removing hyperpolarized gas from a container include introducing an extraction fluid into the container to force the hyperpolarized gas out of an exit port. The hyperpolarized gas is forced out of the container separate and apart from the extraction fluid. Alternatively, if the fluid is a gas, a portion of the gas is mixed with the hyperpolarized gas to form a sterile mixed fluid product suitable for introduction to a patient. An additional method includes engaging a gas transfer source such as a syringe to a transport container and pulling a quantity of the hyperpolarized gas out of the container in a controlled manner. Another method includes introducing a quantity of liquid into a container and covering at least one predetermined internal surface or component with the liquid to mask the surfaces and keep the hyperpolarized gas away from the predetermined internal surface, thereby inhibiting any depolarizing affect from same.
    Type: Application
    Filed: April 6, 2001
    Publication date: October 18, 2001
    Inventors: David L. Zollinger, Kenton C. Hasson, Paul L. Bogorad, Bastiaan Driehuys
  • Patent number: 6295834
    Abstract: Hyperpolarizers which produce hyperpolarized noble gases include one or more on-board NMR monitoring coils configured to monitor the polarization level of the hyperpolarized gas at various production points in the polarized gas production cycle. A dual symmetry NMR coil is positioned adjacent the optical pumping cell and is in fluid communication with a secondary reservoir in fluid communication with the polarized gas dispensing or exit flow path. This can measure the post-thaw polarization of the gas “on-board” the polarizer. Alternately or additionally, a NMR monitoring coil is assembled to the exit port portion of the optical pumping cell to give a more reliable indication of the polarization level of the gas as it flows out of the gas optical pumping cell. Another NMR monitoring coil can be positioned in a cryogenic bath adjacent a quantity of frozen polarized 129Xe to determine the polarization level of the frozen gas.
    Type: Grant
    Filed: June 30, 1999
    Date of Patent: October 2, 2001
    Assignee: Medi-Physics, Inc.
    Inventor: Bastiaan Driehuys
  • Patent number: 6284222
    Abstract: Methods for increasing the T1 of injectable microbubble formulations of hyperpolarized 3He include the step of introducing the hyperpolarized 3He to a quantity of microbubbles held in a chamber and increasing the pressure therein to facilitate the movement or loading of the 3He into the microbubbles. Subsequently, a limited quantity of carrier liquid or a carrier liquid solution alone, or pre-mixed with 3He, can be introduced to the microbubble/3He in the chamber to inhibit the tendency of the 3He to leach out of the bubble. Related pharmaceutical products and associated containers as well as an evacuation based method for rapid mixing and delivery of the bubbles and the 3He is also disclosed. An additional method for dissolving 129Xe gas by using bubbles as an accelerant is also described.
    Type: Grant
    Filed: October 28, 1999
    Date of Patent: September 4, 2001
    Assignee: Medi--Physics, Inc.
    Inventor: Bastiaan Driehuys
  • Publication number: 20010009658
    Abstract: Methods for increasing the T1 of injectable microbubble formulations of hyperpolarized 3He include the step of introducing the hyperpolarized 3He to a quantity of microbubbles held in a chamber and increasing the pressure therein to facilitate the movement or loading of the 3He into the microbubbles. Subsequently, a limited quantity of carrier liquid or a carrier liquid solution alone, or pre-mixed with 3He, can be introduced to the microbubble/3He in the chamber to inhibit the tendency of the 3He to leach out of the bubble. Related pharmaceutical products and associated containers as well as an evacuation based method for rapid mixing and delivery of the bubbles and the 3He is also disclosed. An additional method for dissolving 129Xe gas by using bubbles as an accelerant is also described.
    Type: Application
    Filed: January 19, 2001
    Publication date: July 26, 2001
    Inventor: Bastiaan Driehuys
  • Patent number: 6241966
    Abstract: A method of imaging a spatial distribution of a noble gas by nuclear magnetic resonance spectrometry includes detecting a spatial distribution of at least one noble gas by NMR spectrometry and generating a representation of said spatial distribution of the noble gas. The noble gas is selected from noble gas isotopes having nuclear spin, preferably Xenon-129 and/or Helium-3. The noble gas is at least thermally or equilibrium polarized and is preferably hyperpolarized, most preferably hyperpolarized by optical (laser) pumping in the presence of an alkali metal or by metastability exchange. The generation of the representation of the noble gas spatial distribution includes at least one dimension, preferably 2 or 3 dimensions of the spatial distribution. The noble gas may be imaged according to the invention in chemical or biological systems, preferably in a human or animal subject or organ system or tissue thereof.
    Type: Grant
    Filed: March 18, 1998
    Date of Patent: June 5, 2001
    Assignees: The Trustees of Princeton University, The Research Foundation of State University of New York
    Inventors: Mitchell S. Albert, Dilip Balamore, Gordon D. Cates, Jr., Bastiaan Driehuys, William Happer, Brian Saam, Arnold Wishnia
  • Patent number: 6237363
    Abstract: Methods of extracting and removing hyperpolarized gas from a container include introducing an extraction fluid into the container to force the hyperpolarized gas out of an exit port. The hyperpolarized gas is forced out of the container separate and apart from the extraction fluid. Alternatively, if the fluid is a gas, a portion of the gas is mixed with the hyperpolarized gas to form a sterile mixed fluid product suitable for introduction to a patient. An additional method includes engaging a gas transfer source such as a syringe to a transport container and pulling a quantity of the hyperpolarized gas out of the container in a controlled manner. Another method includes introducing a quantity of liquid into a container and covering at least one predetermined internal surface or component with the liquid to mask the surfaces and keep the hyperpolarized gas away from the predetermined internal surface, thereby inhibiting any depolarizing affect from same.
    Type: Grant
    Filed: September 30, 1998
    Date of Patent: May 29, 2001
    Assignee: Medi-Physics, Inc.
    Inventors: David L. Zollinger, Geri T. K. Zollinger, Kenton C. Hasson, Paul L. Bogorad, Bastiaan Driehuys
  • Publication number: 20010000726
    Abstract: A method of imaging a spatial distribution of a noble gas by nuclear magnetic resonance spectrometry includes detecting a spatial distribution of at least one noble gas by NMR spectrometry and generating a representation of said spatial distribution of the noble gas. The noble gas is selected from noble gas isotopes having nuclear spin, preferably Xenon-129 and/or Helium-3. The noble gas is at least thermally or equilibrium polarized and is preferably hyperpolarized, most preferably hyperpolarized by optical (laser) pumping in the presence of an alkali metal or by metastability exchange. The generation of the representation of the noble gas spatial distribution includes at least one dimension, preferably 2 or 3 dimensions of the spatial distribution. The noble gas may be imaged according to the invention in chemical or biological systems, preferably in a human or animal subject or organ system or tissue thereof.
    Type: Application
    Filed: December 19, 2000
    Publication date: May 3, 2001
    Inventors: Mitchell S. Albert, Dilip Balamore, Gordon D. Cates, Bastiaan Driehuys, William Happer, Brian Saam, Arnold Wishnia
  • Publication number: 20010000727
    Abstract: MR spectroscopy and imaging methods for imaging pulmonary and cardiac vasculature and the cardiac region and evaluating blood flow or circulatory deficits use dissolved phase polarized 129Xe gas and large flip angle excitation pulses. Pulmonary and cardiac vasculature MRI images are obtained by delivering gas to a patient via inhalation such as with a breath-hold delivery -procedure, exciting the dissolved phase gas with a large flip angle pulse, and generating a corresponding image. Preferably, the image is obtained using multi-echo imaging techniques. Blood flow is quantified using low field MR spectroscopy and an RF excitation pulse with a frequency which corresponds to the resonance of the dissolved phase 129Xe.
    Type: Application
    Filed: December 15, 2000
    Publication date: May 3, 2001
    Inventors: Bastiaan Driehuys, Kenton Christopher Hasson, Paul Lev Bogorad
  • Patent number: 6199385
    Abstract: Methods of collecting, thawing, and extending the useful polarized life of frozen polarized gases include heating a portion of the flow path and/or directly liquefying the frozen gas during thawing. A polarized noble gas product with an extended polarized life product is also included. Associated apparatus such as an accumulator and heating jacket for collecting, storing, and transporting polarized noble gases include a secondary flow channel which provides heat to a portion of the collection path during accumulation and during thawing.
    Type: Grant
    Filed: December 11, 1998
    Date of Patent: March 13, 2001
    Assignee: Medi-Physics, Inc.
    Inventors: Bastiaan Driehuys, David Zollinger, Daniel Deaton, K. C. Hasson, Alan Langhorn
  • Patent number: 6128918
    Abstract: A resilient container configured to receive a quantity of hyperpolarized noble gas includes a wall with at least two layers, a first layer with a surface which minimizes spin-relaxation and a first or second layer which is substantially impermeable to oxygen. The container is especially suitable for collecting and transporting .sup.3 He. The resilient container can be configured to directly deliver the hyperpolarized noble gas to a target interface by deflating or collapsing the inflated resilient container. Related collection and transporting methods include forming the wall of the container and collecting the hyperpolarized gas in a way which minimizes its exposure to de-polarizing impurities. Also, a container includes a quantity of polarized gas and extends the T.sub.1 life by configuring the wall of the container with a controlled thickness of the surface coating and overlays the interior with an exterior which is substantially impermeable to oxygen.
    Type: Grant
    Filed: July 30, 1998
    Date of Patent: October 10, 2000
    Assignee: Medi-Physics, Inc.
    Inventors: Daniel M. Deaton, Patrick A. Cella, Kenton C. Hasson, David Zollinger, Bastiaan Driehuys
  • Patent number: 6123919
    Abstract: A method of imaging a spatial distribution of a noble gas by nuclear magnetic resonance spectrometry includes detecting a spatial distribution of at least one noble gas by NMR spectrometry and generating a representation of said spatial distribution of the noble gas. The noble gas is selected from noble gas isotopes having nuclear spin, preferably Xenon-129 and/or Helium-3. The noble gas is at least thermally or equilibrium polarized and is preferably hyperpolarized, most preferably hyperpolarized by optical (laser) pumping in the presence of an alkali metal or by metastability exchange. The generation of the representation of the noble gas spatial distribution includes at least one dimension, preferably 2 or 3 dimensions of the spatial distribution. The noble gas may be imaged according to the invention in chemical or biological systems, preferably in a human or animal subject or organ system or tissue thereof.
    Type: Grant
    Filed: June 24, 1999
    Date of Patent: September 26, 2000
    Assignees: The Trustees of Princeton University, The Research Foundation of State University of New York
    Inventors: Mitchell S. Albert, Dilip Balamore, Gordon D. Cates, Jr., Bastiaan Driehuys, William Happer, Brian Saam, Arnold Wishnia
  • Patent number: 6079213
    Abstract: Methods of collecting, thawing, and extending the useful polarized life of frozen polarized gases include heating a portion of the flow path and/or directly liquefying the frozen gas during thawing. A polarized noble gas product with an extended polarized life product is also included. Associated apparatus such as an accumulator and heating jacket for collecting, storing, and transporting polarized noble gases include a secondary flow channel which provides heat to a portion of the collection path during accumulation and during thawing.
    Type: Grant
    Filed: December 12, 1997
    Date of Patent: June 27, 2000
    Assignee: Magnetic Imaging Technologies Incorporated
    Inventors: Bastiaan Driehuys, David Zollinger, Daniel Deaton, K. C. Hasson
  • Patent number: 5860295
    Abstract: A method and apparatus for accumulation of hyperpolarized .sup.129 Xe is disclosed. The method and apparatus of the invention enable the continuous or episodic accumulation of flowing hyperpolarized .sup.129 Xe in frozen form. The method also permits the accumulation of hyperpolarized .sup.129 Xe to the substantial exclusion of other gases, thereby enabling the purification of hyperpolarized .sup.129 Xe. The invention further includes .sup.129 Xe accumulation means which is integrated with .sup.129 Xe hyperpolarization means in a continuous or pulsed flow arrangement. The method and apparatus enable large scale production, storage, and usage of hyperpolarized .sup.129 Xe for numerous purposes, including imaging of human and animal subjects through magnetic resonance imaging (MRI) techniques.
    Type: Grant
    Filed: February 9, 1998
    Date of Patent: January 19, 1999
    Assignee: The Trustees of Princeton University
    Inventors: Gordon D. Cates, Jr., Bastiaan Driehuys, William Happer, Eli Miron, Brian Saam, Daniel Walter