Patents by Inventor Bastian Sauerer
Bastian Sauerer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250149126Abstract: A method of selecting paraffin inhibitors for a target crude oil includes inputting one of more known properties of a target crude oil into a machine learning model and extrapolating unknown properties of a historical data set using a machine learning model. The machine learning model is trained on the historical data set that includes one or more properties of a plurality of crude oils, one or more properties of a plurality of paraffin inhibitors, and one or more paraffin inhibiting efficiencies of the paraffin inhibitors with the plurality of crude oils. Paraffin inhibiting efficiency is predicted based on the historical data set and extrapolated unknown properties for the plurality of paraffin inhibitors that may be used with the target crude oil. One or more of a list of crude oils having one or more properties within a numerical tolerance of the properties of the target crude oil, a list of paraffin inhibitors for use with the target crude oil, and a list of paraffin inhibitor properties are output.Type: ApplicationFiled: November 1, 2024Publication date: May 8, 2025Inventors: Bastian Sauerer, Moein Zeynolabedinpour, Kang Wang, Chandrashekhar Khandekar
-
Patent number: 12105078Abstract: A method can include receiving, by a demulsifier analysis framework, tensiometer data for an oil and water field sample that includes an added candidate demulsifier, where the tensiometer data include rheology data with respect to frequency and where the demulsifier analysis framework includes a model derived at least in part on bottle test data for demulsifiers in oil and water emulsions; determining a performance characteristic for the candidate demulsifier with respect to the oil and water field sample using the tensiometer data as input to the model of the demulsifier analysis framework without performing a bottle test on the oil and water field sample; and outputting, by the demulsifier analysis framework, the performance characteristic for the candidate demulsifier with respect to breaking an emulsion of the oil and water field sample.Type: GrantFiled: March 16, 2023Date of Patent: October 1, 2024Assignee: Schlumberger Technology CorporationInventor: Bastian Sauerer
-
Publication number: 20240318067Abstract: Embodiments described herein provide corrosion inhibitors that use hyperbranched polymer molecules functionalized with amino carboxylic acids, epoxides, and/or long chain fatty acids, or combinations thereof. Nitrogen atoms in such molecules can be quaternized to increase water solubility if needed. Such hyperbranched polymer corrosion inhibitors can be used in all stages of oil and gas operation.Type: ApplicationFiled: March 22, 2024Publication date: September 26, 2024Inventors: Chandrashekhar Yeshwant Khandekar, Rachael Anne Cole, Tore Nordvik, Kevin Paul Ramirez, Bastian Sauerer
-
Publication number: 20240191623Abstract: A workflow is provided that extracts and isolates an oil/water interface of a formation fluid sample and employs a ToF-SIMS instrument to characterize properties of the oil-water interface of the formation fluid sample. Additionally or alternatively, the workflow can use a ToF-SIMS instrument to analyze a formation rock sample and characterize properties of the formation rock sample. The workflow can also involve combining the at least one property related to the oil-water interface of the formation fluid sample and the least one property related to the formation rock sample for output or display to a user.Type: ApplicationFiled: December 13, 2022Publication date: June 13, 2024Inventors: Bastian Sauerer, Wael Abdallah
-
Publication number: 20230296581Abstract: A method can include receiving, by a demulsifier analysis framework, tensiometer data for an oil and water field sample that includes an added candidate demulsifier, where the tensiometer data include rheology data with respect to frequency and where the demulsifier analysis framework includes a model derived at least in part on bottle test data for demulsifiers in oil and water emulsions; determining a performance characteristic for the candidate demulsifier with respect to the oil and water field sample using the tensiometer data as input to the model of the demulsifier analysis framework without performing a bottle test on the oil and water field sample; and outputting, by the demulsifier analysis framework, the performance characteristic for the candidate demulsifier with respect to breaking an emulsion of the oil and water field sample.Type: ApplicationFiled: March 16, 2023Publication date: September 21, 2023Inventor: Bastian Sauerer
-
Patent number: 11761873Abstract: Methods may include emplacing a downhole tool within a wellbore, sampling a fluid downhole with the downhole tool; analyzing the fluid, and calculating an interfacial tension (IFT), wherein calculating the acid-base IFT contribution comprises measuring a concentration of a surface-active species directly. Apparatuses for measuring an interfacial tension (IFT) in a fluid downhole may be part of a downhole tool and may include a sampling head to sample the fluid; and a downhole fluid analysis module that includes a spectrometer capable of measuring a concentration of a surface-active species in the fluid, and a processor configured to determine the IFT of the fluid downhole based on the measured concentration of the surface-active species.Type: GrantFiled: December 14, 2017Date of Patent: September 19, 2023Assignee: SCHLUMBERGER TECHNOLOGY CORPORATIONInventors: Simon Ivar Andersen, Wael Abdallah, Dominic Joseph Brady, Mohammed Badri, Sharath Chandra Mahavadi, Bastian Sauerer, Mohamed Ahmed Abdel Reheem Hamdy
-
Publication number: 20230114341Abstract: A downhole tool has a tool body with an outer diameter equal to a borehole diameter, at least one cavity formed in and opening to an outer surface defining the outer diameter of the tool body, a light source, a filter, and a light detector mounted in the at least one cavity, and a window disposed at the opening of the at least one cavity, wherein the window encloses the cavity.Type: ApplicationFiled: December 14, 2022Publication date: April 13, 2023Inventors: Harold Pfutzner, Bastian Sauerer
-
Patent number: 11550975Abstract: Methods and systems are provided for characterizing interfacial tension (IFT) of reservoir fluids, which involves obtaining fluid property data that represents fluid properties of a reservoir fluid sample measured downhole at reservoir conditions, and inputting the fluid property data to a computational model that determines a value of oil-water IFT of the reservoir fluid sample based on the fluid property data. In embodiments, the fluid property data represents single-phase fluid properties of the reservoir fluid sample, such as fluid density and viscosity of an oil phase of the reservoir fluid sample and fluid density of a water phase of the reservoir fluid sample. In embodiments, the computation model can be based on machine learning or analytics combined with a thermodynamics-based physics model.Type: GrantFiled: July 28, 2020Date of Patent: January 10, 2023Assignees: SCHLUMBERGER TECHNOLOGY CORPORATION, SAUDI ARABIAN OIL COMPANYInventors: Sharath Chandra Mahavadi, Robin Singh, Wael Abdallah, Mohammed Al-Hamad, Bastian Sauerer, Shouxiang Ma, Leilei Zhang
-
Patent number: 11530611Abstract: A downhole tool has a tool body with an outer diameter equal to a borehole diameter, at least one cavity formed in and opening to an outer surface defining the outer diameter of the tool body, a light source, a filter, and a light detector mounted in the at least one cavity, and a window disposed at the opening of the at least one cavity, wherein the window encloses the cavity.Type: GrantFiled: May 14, 2018Date of Patent: December 20, 2022Assignee: SCHLUMBERGER TECHNOLOGY CORPORATIONInventors: Harold Pfutzner, Bastian Sauerer
-
Publication number: 20220035971Abstract: Methods and systems are provided for characterizing interfacial tension (IFT) of reservoir fluids, which involves obtaining fluid property data that represents fluid properties of a reservoir fluid sample measured downhole at reservoir conditions, and inputting the fluid property data to a computational model that determines a value of oil-water IFT of the reservoir fluid sample based on the fluid property data. In embodiments, the fluid property data represents single-phase fluid properties of the reservoir fluid sample, such as fluid density and viscosity of an oil phase of the reservoir fluid sample and fluid density of a water phase of the reservoir fluid sample. In embodiments, the computation model can be based on machine learning or analytics combined with a thermodynamics-based physics model.Type: ApplicationFiled: July 28, 2020Publication date: February 3, 2022Inventors: Sharath Chandra Mahavadi, Robin Singh, Wael Abdallah, Mohammed Al-Hamad, Bastian Sauerer, Shouxiang Ma, Leilei Zhang
-
Patent number: 11029250Abstract: A method for determining thermal maturity of a formation sample. The method includes: cleaning the formation sample to remove residues of drilling fluid and reservoir fluid to obtain a cleaned sample; performing Raman spectroscopic measurements on the cleaned sample to obtain a Raman spectrum for the cleaned sample; fitting at least a G (graphite) peak and a D1 (defect) peak to the Raman spectrum to obtain Raman shift values for the G peak and the D1 peak and a Raman band separation (RBS) value; using the RBS to generate a vitrinite reflection equivalent (VRe) value using a relationship correlating RBS to VRe; and displaying the VRe as an indicator of formation sample maturity for a depth in the formation from which the cleaned sample was obtained.Type: GrantFiled: February 21, 2018Date of Patent: June 8, 2021Assignee: Schlumberger Technology CorporationInventors: Bastian Sauerer, Wael Abdallah
-
Patent number: 10613251Abstract: Methods may include measuring an interfacial tension (IFT) for a dead oil sample prepared from a fluid within an interval of a formation; calculating a gas:oil ratio for the fluid within the interval of a formation at a specified temperature and pressure; calculating a live oil density for the fluid within the interval of a formation for the specified temperature and pressure; and converting the IFT for the dead oil sample to a corrected IFT measurement for a live oil within the interval of the formation from the calculated gas:oil ratio and the calculated density. Methods may also include constructing a depletion path for the dead oil sample from one or more isobars and one or more isotherms; and converting the IFT for the dead oil sample to a corrected IFT measurement from the calculated gas:oil ratio and the calculated live oil density for a live oil.Type: GrantFiled: December 2, 2016Date of Patent: April 7, 2020Assignee: SCHLUMBERGER TECHNOLOGY CORPORATIONInventors: Mikhail Stukan, Bastian Sauerer, Wael Abdallah
-
Publication number: 20200096429Abstract: Methods may include emplacing a downhole tool within a wellbore, sampling a fluid downhole with the downhole tool; analyzing the fluid, and calculating an interfacial tension (IFT), wherein calculating the acid-base IFT contribution comprises measuring a concentration of a surface-active species directly. Apparatuses for measuring an interfacial tension (IFT) in a fluid downhole may be part of a downhole tool and may include a sampling head to sample the fluid; and a downhole fluid analysis module that includes a spectrometer capable of measuring a concentration of a surface-active species in the fluid, and a processor configured to determine the IFT of the fluid downhole based on the measured concentration of the surface-active species.Type: ApplicationFiled: December 14, 2017Publication date: March 26, 2020Inventors: Simon Ivar Andersen, Wael Abdallah, Dominic Joseph Brady, Mohammed Badri, Sharath Chandra Mahavadi, Bastian Sauerer, Mohamed Ahmed Abdel Reheem Hamdy
-
Publication number: 20200003694Abstract: A method for determining thermal maturity of a formation sample. The method includes: cleaning the formation sample to remove residues of drilling fluid and reservoir fluid to obtain a cleaned sample; performing Raman spectroscopic measurements on the cleaned sample to obtain a Raman spectrum for the cleaned sample; fitting at least a G (graphite) peak and a D1 (defect) peak to the Raman spectrum to obtain Raman shift values for the G peak and the D1 peak and a Raman band separation (RBS) value; using the RBS to generate a vitrinite reflection equivalent (VRe) value using a relationship correlating RBS to VRe; and displaying the VRe as an indicator of formation sample maturity for a depth in the formation from which the cleaned sample was obtained.Type: ApplicationFiled: February 21, 2018Publication date: January 2, 2020Inventors: Bastian Sauerer, Wael Abdallah
-
Publication number: 20190345822Abstract: A downhole tool has a tool body with an outer diameter equal to a borehole diameter, at least one cavity formed in and opening to an outer surface defining the outer diameter of the tool body, a light source, a filter, and a light detector mounted in the at least one cavity, and a window disposed at the opening of the at least one cavity, wherein the window encloses the cavity.Type: ApplicationFiled: May 14, 2018Publication date: November 14, 2019Inventors: Harold Pfutzner, Bastian Sauerer
-
Publication number: 20180156939Abstract: Methods may include measuring an interfacial tension (IFT) for a dead oil sample prepared from a fluid within an interval of a formation; calculating a gas:oil ratio for the fluid within the interval of a formation at a specified temperature and pressure; calculating a live oil density for the fluid within the interval of a formation for the specified temperature and pressure; and converting the IFT for the dead oil sample to a corrected IFT measurement for a live oil within the interval of the formation from the calculated gas:oil ratio and the calculated density. Methods may also include constructing a depletion path for the dead oil sample from one or more isobars and one or more isotherms; and converting the IFT for the dead oil sample to a corrected IFT measurement from the calculated gas:oil ratio and the calculated live oil density for a live oil.Type: ApplicationFiled: December 2, 2016Publication date: June 7, 2018Inventors: Mikhail Stukan, Bastian Sauerer, Wael Abdallah