Patents by Inventor Bastien Guerin

Bastien Guerin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230346247
    Abstract: A system and method are described for MRI excitation pulse design. The system can include a magnetic system that produces a main magnetic field over a portion of a subject for MRI imaging. The system can also include an RF system configured to transmit and receive an RF or B1+ field across at least a target region within the subject. The system may further include a gradient system configured to spatially encode the B1+ field using a gradient waveform. The system may also include a control system, which can be configured to control the RF system in order to generate an RF excitation pulse. The excitation pulse includes freely-shaped RF waveforms, gradient waveforms and, potentially shim array waveforms, selected by penalizing deviation of a flip-angle from a target distribution in order to achieve a target magnetization profile. The method can be applied to 3D and 2D slice-selective excitation and refocusing.
    Type: Application
    Filed: May 2, 2023
    Publication date: November 2, 2023
    Inventors: Bastien Guerin, Lawrence L. Wald, Jason Stockmann
  • Patent number: 11679254
    Abstract: A system and method is provided for assessing Peripheral Nerve Stimulation (PNS). The system receives an imaging pulse sequence to be applied to a region of interest (ROI) of a subject arranged in the imaging system, where the imaging pulse sequence identifies coil parameters related to at least one coil. The system obtains a first model including a plurality of tissue types and corresponding electromagnetic properties in the ROI. The system then obtains a second model indicating location, orientation, and/or physiological properties of one or more nerve tracks in the ROI. The system estimates a plurality of PNS thresholds in the ROI caused by the imaging pulse sequence applied in the imaging system using the first model, the second model, a nerve membrane model, and the coil parameters.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: June 20, 2023
    Assignee: The General Hospital Corporation
    Inventors: Lawrence Wald, Bastien Guerin, Mathias Davids
  • Publication number: 20220179022
    Abstract: Systems and methods for designing and manufacturing electromagnetic coils for use with a magnetic resonance imaging (“MRI”) system are described. More particularly, described here are methods for designing and manufacturing gradient coils for producing magnetic field gradients with greater peripheral nerve stimulation (“PNS”) thresholds relative to conventional gradient coils. The gradient coil design is constrained using an oracle penalty that is computed to account for a PNS requirement for the coil. In other applications, the oracle penalty can be used to optimize driving patterns for an electromagnetic stimulation system, such that a target PNS requirement is achieved.
    Type: Application
    Filed: March 26, 2020
    Publication date: June 9, 2022
    Inventors: Mathias Davids, Bastien Guerin, Lawrence L. Wald
  • Publication number: 20210186405
    Abstract: A method for assessing peripheral nerve stimulation (PNS) for a coil geometry includes retrieving a PNS Huygens' P-matrix for a body model. The PNS Huygens' P-matrix is defined on a Huygens' surface enclosing the body model. The method further includes generating a coil specific PNS P-matrix for the coil geometry based on at least the PNS Huygens' P-matrix for the body model, determining at least one PNS threshold for the coil geometry based on the coil specific PNS P-matrix, and storing the at least one PNS threshold in a storage device.
    Type: Application
    Filed: December 10, 2020
    Publication date: June 24, 2021
    Inventors: Mathias Davids, Lawrence L. Wald, Bastien Guerin
  • Patent number: 10830851
    Abstract: Described here are systems and methods for performing magnetic resonance imaging (“MRI”) using radio frequency (“RF”) phase gradients to provide spatial encoding of magnetic resonance signals rather than the conventional magnetic field gradients. Particularly, the systems and methods described here implement swept RF pulses (e.g., wideband, uniform rate, and smooth transition (“WURST”) RF pulses) and a quadratic phase correction to enable RF phase gradient encoding in inhomogeneous background (B0) magnetic fields.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: November 10, 2020
    Assignee: The General Hospital Corporation
    Inventors: Lawrence L. Wald, Clarissa Z. Cooley, Jason Stockmann, Bastien Guerin, Matthew Rosen
  • Patent number: 10661091
    Abstract: Systems and methods for designing parallel transmission radiofrequency (RF) pulses for use in a RF treatment. The methods include selecting a target region in a subject, and providing a plurality of specific absorption rate (SAR) matrices for estimation of SAR at locations within the subject. The methods also include determining a first set of SAR matrices for locations in the target region using the provided SAR matrices, and determining a second set of SAR matrices for locations not in the target region using the provided SAR matrices. The methods further include designing a plurality of RF pulses for achieving a target power deposition in the target region by using the first set of SAR matrices and the second set of SAR matrices in an optimization that determines a set of RF waveforms that produce a target average local SAR using the first set of SAR matrices while minimizing a local SAR and a global SAR using the second set of SAR matrices.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: May 26, 2020
    Assignee: The General Hospital Corporation
    Inventors: Bastien Guerin, Lawrence L. Wald, Bruce Rosen
  • Patent number: 10310031
    Abstract: Described here are a system and method for designing radio frequency (“RF”) pulses for parallel transmission (“pTx”) applications, and particularly pTx applications in magnetization transfer (“MT”) magnetic resonance imaging (“MRI”). The concept of “SAR hopping” is implemented using a constrained optimization problem that simultaneously designs multiple RF sub-pulses to maximize power deposition in a bound proton pool while also minimizing local SAR across multiple bound proton pool excitation frequencies. This results in the set of RF waveforms that yield the best excitation profiles for all pulses while ensuring that the local SAR of the average of all pulses is below the regulatory limit imposed by the FDA. Pulses are designed simultaneously while constraining local SAR, global SAR, and peak voltage, explicitly.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: June 4, 2019
    Assignee: The General Hospital Corporation
    Inventors: Bastien Guerin, Lawrence L Wald
  • Patent number: 10295624
    Abstract: A method of determining a decoupling matrix of a decoupling system for an array of coils of a parallel transmission magnetic resonance imaging (MRI) system includes obtaining impedance matrix data for the array of coils without the decoupling system, determining, based on the impedance matrix data for the array of coils, an objective function representative of deviation from a decoupled operating condition for the array of coils in which the array of coils are decoupled via the decoupling system, and defining, with a processor, a decoupling matrix representative of a set of impedances of the decoupling system with an iterative procedure that optimizes elements of the decoupling matrix to minimize the objective function and reach the decoupled operating condition.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: May 21, 2019
    Assignees: Massachusetts Institute of Technology, Massachusetts General Hospital, Siemens Healthcare GmbH
    Inventors: Elfar Adalsteinsson, Luca Daniel, Bastien Guerin, Zohaib Mahmood, Markus Vester, Lawrence Wald
  • Publication number: 20190128982
    Abstract: Described here are systems and methods for performing magnetic resonance imaging (“MRI”) using radio frequency (“RF”) phase gradients to provide spatial encoding of magnetic resonance signals rather than the conventional magnetic field gradients. Particularly, the systems and methods described here implement swept RF pulses (e.g., wideband, uniform rate, and smooth transition (“WURST”) RF pulses) and a quadratic phase correction to enable RF phase gradient encoding in inhomogeneous background (B0) magnetic fields.
    Type: Application
    Filed: April 11, 2017
    Publication date: May 2, 2019
    Applicant: The General Hospital Corporation
    Inventors: Lawrence L. WALD, Clarissa Z. COOLEY, Jason STOCKMANN, Bastien GUERIN, Matthew ROSEN
  • Patent number: 10197646
    Abstract: A magnetic resonance imaging (MRI) system includes a plurality of transmitters to generate a parallel transmission radio frequency (RF) pulse, an array of coils coupled to the plurality of transmitters to apply the parallel transmission RF pulse to a subject, and a decoupling system connected to the plurality of transmitters and the array of coils. The decoupling system includes a plurality of hybrid couplers, each hybrid coupler of the plurality of hybrid couplers being coupled to a respective pair of the plurality of transmitters and to a respective pair of the array of coils. The plurality of hybrid couplers are configured to diagonalize an impedance matrix of the plurality of coils.
    Type: Grant
    Filed: May 6, 2015
    Date of Patent: February 5, 2019
    Assignees: Siemens Aktiengesellschaft, Massachusetts Institute of Technology, Massachusetts General Hospital Corporation
    Inventors: Elfar Adalsteinsson, Luca Daniel, Bastien Guerin, Boris Keil, Zohaib Mahmood, Markus Vester, Lawrence Wald
  • Publication number: 20180133467
    Abstract: A system and method for assessing Peripheral Nerve Stimulation (PNS). The system receives an imaging pulse sequence to be applied to at least a region of interest (ROI) of a subject arranged in the imaging system, the imaging pulse sequence identifying coil parameters related to at least one coil. The system obtains a first model including a plurality of tissue types and corresponding electromagnetic properties in the ROI. The system then obtains a second model indicating at least one of location, orientation, and physiological properties of one or more nerve tracks in the ROI. The system estimates a plurality of PNS thresholds in the ROI caused by the imaging pulse sequence applied in the imaging system using the first model, the second model, a nerve membrane model, and the coil parameters.
    Type: Application
    Filed: November 13, 2017
    Publication date: May 17, 2018
    Inventors: Lawrence Wald, Bastien Guerin, Mathias Davids
  • Publication number: 20170123022
    Abstract: Described here are a system and method for designing radio frequency (“RF”) pulses for parallel transmission (“pTx”) applications, and particularly pTx applications in magnetization transfer (“MT”) magnetic resonance imaging (“MRI”). The concept of “SAR hopping” is implemented using a constrained optimization problem that simultaneously designs multiple RF sub-pulses to maximize power deposition in a bound proton pool while also minimizing local SAR across multiple bound proton pool excitation frequencies. This results in the set of RF waveforms that yield the best excitation profiles for all pulses while ensuring that the local SAR of the average of all pulses is below the regulatory limit imposed by the FDA. Pulses are designed simultaneously while constraining local SAR, global SAR, and peak voltage, explicitly.
    Type: Application
    Filed: November 3, 2016
    Publication date: May 4, 2017
    Inventors: Bastien Guerin, Lawrence L Wald
  • Patent number: 9417298
    Abstract: Described here are a system and method for designing radio frequency (“RF”) pulses for parallel transmission (“pTx”) applications, and particularly pTx applications in multislice magnetic resonance imaging (“MRI”). The concept of “SAR hopping” is implemented by framing the concept between slice-selective excitations as a constrained optimization problem that attempts designing multiple pulses simultaneously subject to an overall local SAR constraint. This results in the set of RF waveforms that yield the best excitation profiles for all pulses while ensuring that the local SAR of the average of all pulses is below the regulatory limit imposed by the FDA. Pulses are designed simultaneously while constraining local SAR, global SAR, and peak power, and average power explicitly.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: August 16, 2016
    Assignee: The General Hospital Corporation
    Inventors: Bastien Guerin, Lawrence L. Wald, Elfar Adalsteinsson
  • Publication number: 20150323623
    Abstract: A magnetic resonance imaging (MRI) system includes a plurality of transmitters to generate a parallel transmission radio frequency (RF) pulse, an array of coils coupled to the plurality of transmitters to apply the parallel transmission RF pulse to a subject, and a decoupling system connected to the plurality of transmitters and the array of coils. The decoupling system includes a plurality of hybrid couplers, each hybrid coupler of the plurality of hybrid couplers being coupled to a respective pair of the plurality of transmitters and to a respective pair of the array of coils. The plurality of hybrid couplers are configured to diagonalize an impedance matrix of the plurality of coils.
    Type: Application
    Filed: May 6, 2015
    Publication date: November 12, 2015
    Inventors: Elfar Adalsteinsson, Luca Daniel, Bastien Guerin, Boris Keil, Zohaib Mahmood, Markus Vester, Lawrence Wald
  • Publication number: 20150273230
    Abstract: Systems and methods for designing parallel transmission radiofrequency (RF) pulses for use in a RF treatment. The methods include selecting a target region in a subject, and providing a plurality of specific absorption rate (SAR) matrices for estimation of SAR at locations within the subject. The methods also include determining a first set of SAR matrices for locations in the target region using the provided SAR matrices, and determining a second set of SAR matrices for locations not in the target region using the provided SAR matrices. The methods further include designing a plurality of RF pulses for achieving a target power deposition in the target region by using the first set of SAR matrices and the second set of SAR matrices in an optimization that determines a set of RF waveforms that produce a target average local SAR using the first set of SAR matrices while minimizing a local SAR and a global SAR using the second set of SAR matrices.
    Type: Application
    Filed: March 25, 2015
    Publication date: October 1, 2015
    Inventors: Bastien Guerin, Lawrence L. Wald, Bruce Rosen
  • Publication number: 20140292337
    Abstract: A method of determining a decoupling matrix of a decoupling system for an array of coils of a parallel transmission magnetic resonance imaging (MRI) system includes obtaining impedance matrix data for the array of coils without the decoupling system, determining, based on the impedance matrix data for the array of coils, an objective function representative of deviation from a decoupled operating condition for the array of coils in which the array of coils are decoupled via the decoupling system, and defining, with a processor, a decoupling matrix representative of a set of impedances of the decoupling system with an iterative procedure that optimizes elements of the decoupling matrix to minimize the objective function and reach the decoupled operating condition.
    Type: Application
    Filed: June 14, 2013
    Publication date: October 2, 2014
    Inventors: Elfar Adalsteinsson, Luca Daniel, Bastien Guerin, Zohaib Mahmood, Markus Vester, Lawrence Wald
  • Publication number: 20130300414
    Abstract: Described here are a system and method for designing radio frequency (“RF”) pulses for parallel transmission (“pTx”) applications, and particularly pTx applications in multislice magnetic resonance imaging (“MRI”). The concept of “SAR hopping” is implemented by framing the concept between slice-selective excitations as a constrained optimization problem that attempts designing multiple pulses simultaneously subject to an overall local SAR constraint. This results in the set of RF waveforms that yield the best excitation profiles for all pulses while ensuring that the local SAR of the average of all pulses is below the regulatory limit imposed by the FDA. Pulses are designed simultaneously while constraining local SAR, global SAR, and peak power, and average power explicitly.
    Type: Application
    Filed: March 14, 2013
    Publication date: November 14, 2013
    Inventors: Bastien Guerin, Lawrence L. Wald, Elfar Adalsteinsson