Patents by Inventor Beata Jarosiewicz

Beata Jarosiewicz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230201599
    Abstract: Systems, methods, and devices for automatic generation of a stimulation therapy that mimics electrographic activity in the brain at natural seizure termination define a stimulation therapy to be generated by an implanted component of a medical device system and delivered to a subject through identifying data characterizing a patient's seizures, especially at termination. A machine learning model identifies the seizures or seizure types from which to establish a canonical seizure or seizure type, and an algorithm translates the canonical seizure or seizure type into data that can be used to characterize a stimulation therapy. The systems, methods, and devices, include those configured to deliver the stimulation therapy that emulates the canonical seizure or seizure type when the seizure is detected, with the aim of terminating the seizure sooner than it would terminate without intervention.
    Type: Application
    Filed: February 16, 2023
    Publication date: June 29, 2023
    Inventor: Beata JAROSIEWICZ
  • Patent number: 11612750
    Abstract: Systems, methods, and devices for automatic generation of a stimulation therapy that mimics electrographic activity in the brain at natural seizure termination define a stimulation therapy to be generated by an implanted component of a medical device system and delivered to a subject through identifying data characterizing a patient's seizures, especially at termination. A machine learning model identifies the seizures or seizure types from which to establish a canonical seizure or seizure type, and an algorithm translates the canonical seizure or seizure type into data that can be used to characterize a stimulation therapy. The systems, methods, and devices, include those configured to deliver the stimulation therapy that emulates the canonical seizure or seizure type when the seizure is detected, with the aim of terminating the seizure sooner than it would terminate without intervention.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: March 28, 2023
    Assignee: NeuroPace, Inc.
    Inventor: Beata Jarosiewicz
  • Publication number: 20200298007
    Abstract: Systems, methods, and devices for automatic generation of a stimulation therapy that mimics electrographic activity in the brain at natural seizure termination define a stimulation therapy to be generated by an implanted component of a medical device system and delivered to a subject through identifying data characterizing a patient's seizures, especially at termination. A machine learning model identifies the seizures or seizure types from which to establish a canonical seizure or seizure type, and an algorithm translates the canonical seizure or seizure type into data that can be used to characterize a stimulation therapy. The systems, methods, and devices, include those configured to deliver the stimulation therapy that emulates the canonical seizure or seizure type when the seizure is detected, with the aim of terminating the seizure sooner than it would terminate without intervention.
    Type: Application
    Filed: February 27, 2020
    Publication date: September 24, 2020
    Inventor: Beata JAROSIEWICZ
  • Patent number: 9851795
    Abstract: A method for context-aware self-calibration includes measuring for a plurality of time segments, at least one feature of at least one biosignal or each of at least one channel. Each biosignal is created in response to a user imagining an intended direction for each time segment. An object is moved along an actual decoded direction determined by an output of a decoder configured to correlate for each time segment the at least one feature to the intended direction. The decoder self-calibrates to minimize for each time segment, an error between the actual decoded direction, and the intended direction inferred subsequent to the respective time segment.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: December 26, 2017
    Assignee: Brown University
    Inventors: Beata Jarosiewicz, Nicolas Masse, Daniel Bacher, Anish Sarma
  • Publication number: 20150370325
    Abstract: A method for context-aware self-calibration includes measuring for a plurality of time segments, at least one feature of at least one biosignal or each of at least one channel. Each biosignal is created in response to a user imagining an intended direction for each time segment. An object is moved along an actual decoded direction determined by an output of a decoder configured to correlate for each time segment the at least one feature to the intended direction. The decoder self-calibrates to minimize for each time segment, an error between the actual decoded direction, and the intended direction inferred subsequent to the respective time segment.
    Type: Application
    Filed: June 15, 2015
    Publication date: December 24, 2015
    Applicant: Brown University
    Inventors: Beata Jarosiewicz, Nicolas Masse, Daniel Bacher, Anish Sarma