Patents by Inventor Bechir CHEHAB
Bechir CHEHAB has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12037661Abstract: The invention relates to a process for manufacturing a part (20) comprising a formation of successive solid metal layers (201 . . . 20n), superimposed on one another, each layer describing a pattern defined from a numerical model (M), each layer being formed by the deposition of a metal (25), referred to as a filler metal, the filer metal being subjected to an input of energy so as to melt and constitute, by solidifying, said layer, wherein the filler metal takes the form of a powder (25), of which the exposure to an energy beam (32) results in a melting followed by a solidification in such a way as to form a solid layer (201, . . . 20n), the method being characterized in that the filler metal (25) is an aluminum alloy comprising at least the following alloying elements: Si, according to a weight fraction from 4% to 20%; Fe, according to a weight fraction from 2% to 15%. The invention also relates to a part obtained by this method.Type: GrantFiled: April 26, 2018Date of Patent: July 16, 2024Assignee: C-TEC Constellium Technology CenterInventors: Bechir Chehab, Philippe Jarry, Marine Ledoux, Jocelyn Prigent
-
Publication number: 20240227023Abstract: A method for manufacturing a part (20) including forming successive metal layers (201 . . . 20n), stacked on each other, each layer being formed by depositing an aluminum alloy (15), the aluminum alloy being subjected to an energy input so as to melt down and form said layer when solidifying, the method being characterized in that: during the manufacture of the part, before the formation of each layer, the aluminum alloy powder is maintained at a temperature higher than or equal to 25° C. and lower than 160° C. or comprised from 300° C. to 500° C.; the method includes applying, to the part, a post-manufacture heat treatment at a temperature comprised from 300° C. to 400° C.; the post-manufacture heat treatment begins with an increase in temperature, the increase being performed at a temperature rise rate higher than 5° C. per minute; the method does not include solution heat treatment followed by quenching.Type: ApplicationFiled: May 24, 2022Publication date: July 11, 2024Inventors: Bechir CHEHAB, Ravi SHAHANI
-
Patent number: 11932922Abstract: A strip intended for the manufacture of brazed heat exchangers, having a core made of an aluminium alloy with the composition (weight %): Si: 0.10-0.30%, preferably 0.15-0.25% Fe<0.20% Cu: 0.75-1.05%, preferably 0.75-1.02%, more preferably 0.75-1.0% Mn: 1.2-1.7%, preferably 1.2-1.55%, more preferably 1.25-1.4% Mg<0.03% preferably <0.025%, more preferably <0.015% Zn<0.1% Ti<0.15% other elements <0.05% each and <0.15% in total, remainder aluminium.Type: GrantFiled: February 27, 2020Date of Patent: March 19, 2024Assignee: CONSTELLIUM NEUF-BRISACHInventors: Lionel Peguet, Bechir Chehab
-
Patent number: 11833619Abstract: Brazing strip or sheet comprising: a core layer made of aluminum alloy; a brazing layer made of aluminum alloy, clad on at least one face of the core layer; optionally an intermediate layer made of aluminum alloy, clad on at least one face either between the core layer and the brazing layer or the core layer without any other layer on top; characterized in that the brazing layer alloy comprises, in mass percentages: from 7 to 13% Si, at most 0.8% Fe, at most 0.45% Cu, at most 0.20% Mn, at most 0.15% Mg, at most 0.20% Zn, at most 0.20% Ti, at most 0.04% Bi, from 0.01 to 0.10% Y, from 0.01 to 0.10% Sn, remainder aluminum and impurities.Type: GrantFiled: December 14, 2020Date of Patent: December 5, 2023Assignee: CONSTELLIUM NEUF-BRISACHInventors: Philippe Jarry, Bechir Chehab
-
Patent number: 11692240Abstract: The invention relates to a process for manufacturing a part comprising a formation of successive solid metal layers (201 . . . 20n) that are stacked on top of one another, each layer describing a pattern defined using a numerical model (M), each layer being formed by the deposition of a metal (25), referred to as solder, the solder being subjected to an input of energy so as to start to melt and to constitute, by solidifying, said layer, wherein the solder takes the form of a powder (25), the exposure of which to an energy beam (32) results in melting followed by solidification so as to form a solid layer (201 . . . 20n). The process is characterized in that the solder (25) is an aluminum alloy comprising at least the following alloy elements: —Fe, in a weight fraction of from 1 to 3.7%, preferably from 1 to 3.6%; —Zr and/or Hf and/or Er and/or Sc and/or Ti, in a weight fraction of from 0.5 to 4%, preferably from 1 to 4%, more preferably from 1.5 to 3.5%, even more preferably from 1.Type: GrantFiled: October 3, 2019Date of Patent: July 4, 2023Assignee: C-TEC Constellium Technology CenterInventor: Bechir Chehab
-
Publication number: 20230191489Abstract: The invention relates to a method for producing a part, comprising the production of successive solid metallic layers (201...20n), each layer being produced by depositing a metal (25) called filler metal, said method being characterized in that the part has a specific grain structure. The invention also relates to a part obtained by means of this method and an alternative method. The alloy used in the additive manufacturing method of the invention makes it possible to obtain parts with exceptional properties.Type: ApplicationFiled: May 10, 2021Publication date: June 22, 2023Inventors: Bechir CHEHAB, Ravi SHAHANI
-
Publication number: 20230191488Abstract: The invention relates to a method for producing a part, comprising the production of successive solid metallic layers (201 . . . 20n), each layer being produced by depositing a metal (25) called filler metal, said filler metal consisting of an aluminium alloy comprising at least the following alloying elements: Zr, in a mass fraction of 0.60 to 1.40%, Mn, in a mass fraction of 2.00 to 5.00%, Ni, in a mass fraction of 1.00 to 5.00%, Cu, in a mass fraction of 1.00 to 5.00%. The invention also relates to a part obtained by means of the method. The alloy used in the additive manufacturing method of the invention makes it possible to obtain parts with exceptional properties.Type: ApplicationFiled: May 10, 2021Publication date: June 22, 2023Inventors: Bechir CHEHAB, Ravi SHAHANI
-
Patent number: 11654516Abstract: The present invention relates to a process for the production of an aluminium multilayer brazing sheet which comprises a core layer made of a 3xxx alloy comprising 0.1 to 0.25 wt. % Mg, a brazing layer made of a 4xxx alloy on one or both sides of the core layer, and optionally an interlayer between the core layer and the brazing layer on one or both sides of the core layer, the process comprising the successive steps of: providing the layers to be assembled or simultaneous casting of the layers to obtain a sandwich; rolling of the resulting sandwich to obtain a sheet; and treating the surface of the sheet with an alkaline or acidic etchant.Type: GrantFiled: December 10, 2018Date of Patent: May 23, 2023Assignee: CONSTELLIUM NEUF-BRISACHInventors: Bechir Chehab, Carole Loable
-
Publication number: 20230032540Abstract: Brazing strip or sheet comprising: a core layer made of aluminum alloy; a brazing layer made of aluminum alloy, clad on at least one face of the core layer; optionally an intermediate layer made of aluminum alloy, clad on at least one face either between the core layer and the brazing layer or the core layer without any other layer on top; characterized in that the brazing layer alloy comprises, in mass percentages: from 7 to 13% Si, at most 0.8% Fe, at most 0.45% Cu, at most 0.20% Mn, at most 0.15% Mg, at most 0.20% Zn, at most 0.20% Ti, at most 0.04% Bi, from 0.01 to 0.10% Y, from 0.01 to 0.10% Sn, remainder aluminum and impurities.Type: ApplicationFiled: December 14, 2020Publication date: February 2, 2023Inventors: Philippe JARRY, Bechir CHEHAB
-
Publication number: 20220389543Abstract: Process for manufacturing a part (20) including a formation of successive metal layers (201 . . . 20n), which are superimposed on each other, each layer being formed by depositing a filler metal (15, 25), the filler metal being subjected to a supply of energy so as to become molten and to constitute, upon solidifying, said layer, the process being characterized in that the filler metal (15, 25) is an aluminum alloy including the following alloy elements (% by weight); Mg: 2.0%-5.0%; Zr: 0.5%-1.0%; Fe: 0.6%-3.0%; optionally Zn: ?0.5%; optionally Cu: ?0.5%; other alloy elements, in total ?4.0%, and individually ?1.0%; impurities: <0.05% individually, and in total <0.15%; remainder aluminum.Type: ApplicationFiled: November 18, 2020Publication date: December 8, 2022Inventors: Bechir CHEHAB, Jochen ALTENBEREND, Ravi SHAHANI
-
Publication number: 20220213579Abstract: The invention relates to a method for manufacturing a part including a formation of successive solid metallic layers (201 . . . 20n), superimposed on one another, each layer describing a pattern defined from a digital model (M), each layer being formed by the deposition of a metal (25), called filler metal, the filler metal being subjected to an energy input so as to melt and constitute, when solidifying, said layer, wherein the filler metal is in the form of a powder (25), whose exposure to an energy beam (32) results in melting followed by solidification so as to form a solid layer (201 . . . 20n), the method being characterized in that the filler metal (25) is an aluminum alloy comprising at least the following alloy elements: Ni, according to a weight fraction from 1 to 8%, preferably from 2 to 7%; Zr, according to a weight fraction from 0.3 à 3%, preferably from 0.5 to 2.5%; optionally V, according to a weight fraction from 0 à 4%, preferably from 0.Type: ApplicationFiled: February 13, 2020Publication date: July 7, 2022Inventor: Bechir CHEHAB
-
Publication number: 20220145432Abstract: A strip intended for the manufacture of brazed heat exchangers, having a core made of an aluminium alloy with the composition (weight %): Si: 0.10-0.30%, preferably 0.15-0.25% Fe<0.20% Cu: 0.75-1.05%, preferably 0.75-1.02%, more preferably 0.75-1.0% Mn: 1.2-1.7%, preferably 1.2-1.55%, more preferably 1.25-1.4% Mg<0.03% preferably <0.025%, more preferably <0.015% Zn<0.1% Ti<0.15% other elements <0.05% each and <0.15% in total, remainder aluminium.Type: ApplicationFiled: February 27, 2020Publication date: May 12, 2022Inventors: Lionel PEGUET, Bechir CHEHAB
-
Publication number: 20220126367Abstract: A method for manufacturing a part (20) including a formation of successive metallic layers (201 . . . 20n), superimposed on one another, each layer being formed by the deposition of a filler metal (15, 25), the filler metal being subjected to an energy input so as to melt and constitute, when solidifying, said layer, the method being characterized in that the filler metal (15, 25) is an aluminum alloy including the following alloy elements (weight %): Ni: >3% and ?7%; Fe: 0%-4%; optionally Zr: ?0.5%; optionally Si: ?0.5%; optionally Cu: ?1%; optionally Mg: ?0.5%; other alloy elements: <0.1% individually, and <0.5% all in all; impurities: <0.05% individually, and <0.15% all in all; the remainder consisting of aluminum.Type: ApplicationFiled: February 13, 2020Publication date: April 28, 2022Inventors: Bechir CHEHAB, Ravi SHAHANI
-
Publication number: 20220119926Abstract: An object of the invention is a method for manufacturing a part including a formation of successive metallic layers (201, . . . 20n), superimposed on one another, each layer being formed by the deposition of a filler metal (15, 35), the filler metal being subjected to an energy supply so as to melt and constitute, when solidifying, said layer, the method being characterized in that the filler metal (15, 35) is an aluminum alloy including the following alloy elements, in weight percents: Mg: 0%-6%; Zr: 0.7%-2.5%, preferably according to a first variant >1% and ?2.5%; or preferably according to a second variant 0.7-2%; and possibly 0.7-1.6%; and possibly 0.7-1.4%; and possibly 0.8-1.4%; and possibly 0.8-1.2%; at least one alloy element selected from Fe, Cu, Mn, Ni and/or La: at least 0.1%, preferably at least 0.25%, more preferably at least 0.5% per element; impurities: <0.05% individually, and preferably <0.15% all in all.Type: ApplicationFiled: January 24, 2020Publication date: April 21, 2022Inventors: Bechir CHEHAB, Ravi SHAHANI
-
Publication number: 20220112581Abstract: Process for manufacturing a part (20), comprising a formation of successive metal layers (201 . . . 20n) which are superimposed on each other, each layer describing a pattern which is defined on the basis of a numerical model (M), each layer being formed by the deposit of a filler metal (15, 25), the filler metal being subjected to a supply of energy so as to become molten and to constitute, upon solidifying, said layer, the process being characterised in that the filler metal (15, 25) is an aluminium alloy comprising the following alloy elements (% by weight): Cu: 5%-8%; Mg: 4%-8%; optionally Si: 0%-8%; optionally Zn: 0%-10%; and other elements: <2% individually, the other elements comprising: Sc and/or Fe and/or Mn and/or Ti and/or Zr and/or V and/or Cr and/or Ni; impurities: <0.05% individually, and in total <0.15%; the remainder being aluminium.Type: ApplicationFiled: September 19, 2019Publication date: April 14, 2022Inventor: Bechir CHEHAB
-
Publication number: 20220088681Abstract: A method for manufacturing a part 20 including a formation of successive metallic layers (201 . . . 20n), superimposed on one another, each layer being formed by the deposition of a filler metal (15, 25), the filler metal being subjected to an energy input so as to melt and constitute, when solidifying, said layer, the method being characterized in that the filler metal (15, 25) is an aluminum alloy including the following alloy elements (weight %): Zr: 0.5% to 2.5%, preferably according to a first variant 0.8 to 2.5%, more preferably 1 to 2.5%, still more preferably 1.3 to 2.5%; or preferably according to a second variant 0.5 to 2%, more preferably 0.6 to 1.8%, more preferably 0.6 to 1.6%, more preferably 0.7 to 1.5%, more preferably 0.8 to 1.5%, more preferably 0.9 to 1.5%, still more preferably 1 to 1.4%; Fe: 0% to 3%, preferably 0.5% to 2.5%; preferably according to a first variant 0.8 to 2.5%, preferably 0.8 to 2%, more preferably 0.8 to 1.2; or preferably according to a second variant 1.5 to 2.Type: ApplicationFiled: January 24, 2020Publication date: March 24, 2022Inventor: Bechir CHEHAB
-
Publication number: 20220002843Abstract: A strip intended for the manufacture of brazed heat exchangers, having a core made of an alloy with the composition (weight %): Si: 0.10-0.30%, preferably 0.15-0.25% Fe<0.25%, preferably 0.1-0.2% Cu: 0.85-1.1%, preferably 0.9-1.0% Mn: 1.2-1.7%, preferably 1.2-1.4% Mg: 0.1-0.3%, preferably 0.1-0.21% Zn<0.1% Ti 0.05-0.20%, preferably 0.06-0.15%, more preferably 0.06-0.1% optionally up to 0.15% of Bi and/or Y other elements <0.05% each and <0.15% in total, remainder aluminium.Type: ApplicationFiled: February 27, 2020Publication date: January 6, 2022Inventors: Bechir CHEHAB, Armelle DANIELOU, Pablo LORENZINO, Lionel PEGUET
-
Publication number: 20210331244Abstract: The invention relates to a process for manufacturing a part comprising a formation of successive solid metal layers (201 . . . 20n) that are stacked on top of one another, each layer describing a pattern defined using a numerical model (M), each layer being formed by the deposition of a metal (25), referred to as solder, the solder being subjected to an input of energy so as to start to melt and to constitute, by solidifying, said layer, wherein the solder takes the form of a powder (25), the exposure of which to an energy beam (32) results in melting followed by solidification so as to form a solid layer (201 . . . 20n). The process is characterized in that the solder (25) is an aluminum alloy comprising at least the following alloy elements: —Fe, in a weight fraction of from 1 to 3.7%, preferably from 1 to 3.6%; —Zr and/or Hf and/or Er and/or Sc and/or Ti, in a weight fraction of from 0.5 to 4%, preferably from 1 to 4%, more preferably from 1.5 to 3.5%, even more preferably from 1.Type: ApplicationFiled: October 3, 2019Publication date: October 28, 2021Inventor: Bechir CHEHAB
-
Publication number: 20210276099Abstract: There is provided a method for manufacturing a part (20) including a formation of successive solid metal layers (201 . . . 20n), superimposed on one another, each layer describing a pattern defined from a digital model (M), each layer being formed by the deposition of a metal (25), referred to as a solder, the solder being subjected to an input of energy so as to melt and, in solidifying, to constitute said layer, wherein the solder takes the form of a powder (25), the exposure of which to an energy beam (32) results in melting followed by solidification so as to form a solid layer (201 . . . 20n).Type: ApplicationFiled: April 5, 2019Publication date: September 9, 2021Inventor: Bechir CHEHAB
-
Publication number: 20210269896Abstract: The invention relates to a process for manufacturing a part, involving forming consecutive solid metal layers (201 . . . 20n) that are stacked on top of one another, each layer describing a pattern defined on the basis of a numerical model {M), each layer being formed by depositing a metal (25), referred to as filling metal, the filling metal being subjected to an input of energy so as to melt and constitute said layer upon solidifying, the filling metal being in the form of a powder (25) that is exposed to an energy beam (32), resulting in melting followed by solidification such that a solid layer (201 . . . 20n) is formed, the process being characterized in that the filling metal (25) is an aluminum alloy comprising at least the following alloying elements: —Ni, in a moiety of 1 to 6%, preferably 1 to 5.5%, more preferably 2 to 5.5%; —Cr, in a moiety of 1 to 7%, preferably 3 to 6.5%; —Zr, in a moiety of 0.5 to 4%, preferably 1 to 3%; —Fe, in a moiety of no more than 1%, preferably between 0.05 and 0.Type: ApplicationFiled: July 8, 2019Publication date: September 2, 2021Inventor: Bechir CHEHAB