Patents by Inventor Behnam Behroozpour
Behnam Behroozpour has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12066535Abstract: A LIDAR system includes at least one optical component configured to output a system output signal that travels away from the LIDAR system and can be reflected by an object located outside of the LIDAR system. The LIDAR system also includes a control mechanism configured to control one or more process variables of the system output signal. The control mechanism uses an electrical process variable signal to control the process variable. The process variable signal has an in-phase component and a quadrature component.Type: GrantFiled: May 16, 2020Date of Patent: August 20, 2024Assignee: SiLC Technologies, Inc.Inventor: Behnam Behroozpour
-
Patent number: 12066541Abstract: The imaging system includes a photonic circuit chip having multiple cores. Each of the cores includes an optical switch and multiple alternate waveguides. The optical switch in each core is configured to direct an outgoing light signal to any one of the alternate waveguides, the alternate waveguide to which the outgoing light signal is directed being an active waveguide. Each core outputs the outgoing LIDAR signal from the active waveguide while receiving an incoming LIDAR signal that includes light from the outgoing LIDAR signal, has exited from the imaging system, and has returned to the imaging system. Each core includes a signal splitter that receives the outgoing LIDAR signal and the incoming LIDAR signal. The signal splitter extracts a portion of the outgoing LIDAR signal that serves as a reference signal and at least a portion of the incoming LIDAR signal that serves as a comparative signal.Type: GrantFiled: May 31, 2022Date of Patent: August 20, 2024Assignee: SiLC Technologies, Inc.Inventors: Mehdi Asghari, Uttam Paudel, Behnam Behroozpour, George Nikolaev Guentchev
-
Patent number: 12066577Abstract: A LIDAR system has multiple optical components. At least one of the optical components is configured to output a LIDAR output signal that travels away from the LIDAR system and can be reflected by an object located outside of the LIDAR system. The LIDAR system also includes electronics configured to operate one or more of the optical components so as to tune the frequency of the LIDAR output signal without changing an amplitude of the LIDAR output signal.Type: GrantFiled: May 8, 2020Date of Patent: August 20, 2024Assignee: SiLC Technologies, Inc.Inventors: Amir Ali Tavallaee, Behnam Behroozpour, Mehdi Asghari
-
Publication number: 20240176022Abstract: The LIDAR system includes a light source that outputs an outgoing LIDAR signal. The LIDAR system also includes multiple phase differential generators that each combines a first light signal with a second light signal so as to generate a beating control signal. Each of the first light signals and each of the second light signals includes light from the outgoing LIDAR signal. Additionally, the phase differential generators generate each of the beating control signals with a phase difference between the contribution of the first light signal to the beating control signal and the contribution of the second light signal to the beating control signal. The phase difference is different for the beating control signals from different phase differential generators. Electronics apply a light source control signal to the light source so as to chirp the frequency of the outgoing LIDAR signal.Type: ApplicationFiled: November 30, 2022Publication date: May 30, 2024Inventor: Behnam Behroozpour
-
Patent number: 11947044Abstract: An optical element for transmitting a light beam includes a waveguide configured to transmit the light beam from an input end to an output end and having an optical property that can be modified by deformation of the waveguide. A phase-shifter is affixed to the waveguide and is operable in response to a control signal to mechanically deform the waveguide sufficient to induce a phase shift in the light beam transmitted therethrough. The phase-shifter can include a PZT layer.Type: GrantFiled: January 18, 2019Date of Patent: April 2, 2024Assignee: Robert Bosch GmbHInventors: Behnam Behroozpour, Seow Yuen Yee, Ken Wojciechowski, Ning Wang
-
Publication number: 20230417910Abstract: Systems and methods described herein are directed to polarization separation of incoming light signals associated with an imaging system, such as a Light Detection and Ranging (LIDAR) system. Example embodiments describe a system configured to direct incoming light signals to a polarization separator and capture the two polarization states of the incoming light signals. The system may process the two polarization states of the incoming light signals separately to extract information associated with reflecting objects within the field-of-view of the imaging system. The polarization separator may be a birefringent crystal positioned adjacent to an edge of a photonic integrated circuit (PIC) that is used for processing outgoing and incoming light signals associated with the imaging system. The PIC may include at least one on-chip polarization rotator for converting a light signal of one polarization state to a light signal of another polarization state.Type: ApplicationFiled: September 6, 2023Publication date: December 28, 2023Inventors: Prakash Koonath, Shuren Hu, Mehdi Asghari, Bradley Jonathan Luff, Behnam Behroozpour
-
Patent number: 11809060Abstract: A phase-shifter for a light-transmitting waveguide is segmented into multiple segments that can be calibrated to the overall length of a conventional single phase-shifter. Each segment receives a control signal, which can be a single bit signal, with the phase-shift capability of the segmented phase-shifter controlled by which segment(s) receive(s) a control signal. In one implementation, a binary weighting is applied to determine segment lengths. Smaller segments can be increased in length to achieve a 2? offset of the phase shift produced by the segment while maintaining the same binary relationship among segments. In another embodiment, multiple segments of uniform lengths can be used for a single phase-shifter with each segment controlled by an n-bit signal.Type: GrantFiled: January 24, 2019Date of Patent: November 7, 2023Assignee: Robert Bosch GmbHInventors: Pedram Lajevardi, Behnam Behroozpour, Christoph Lang, Ken Wojciechowski
-
Patent number: 11789149Abstract: Systems and methods described herein are directed to polarization separation of laser signals and/or incoming light signals associated with an imaging system, such as a Light Detection and Ranging (LIDAR) system. Example embodiments describe a system configured to direct incoming light signals to a polarization separator and capturing the two polarization states of the incoming light signals. In some instances, the laser signal may be converted into two different polarization states. The system may individually process the two polarization states of the incoming light signals along with the corresponding polarization state of the laser reference signal to extract information associated with reflecting objects within the field-of-view of the imaging system. The polarization separator may be a birefringent crystal positioned adjacent to an edge of a photonic integrated circuit (PIC) that is used for processing outgoing and incoming light signals associated with the imaging system.Type: GrantFiled: October 4, 2020Date of Patent: October 17, 2023Assignee: SiLC Technologies, Inc.Inventors: Prakash Koonath, Shuren Hu, Mehdi Asghari, Bradley Jonathan Luff, Behnam Behroozpour
-
Patent number: 11789154Abstract: Systems and methods described herein are directed to high speed remote imaging systems, such as Light Detection and Ranging (LIDAR) systems. Example embodiments describe systems that are configured to mitigate a walk-off effect that may limit a speed of operation of the imaging system. The walk-off effect may be characterized by a failure to steer returning signals to a designated input facet of the imaging system due to continuous rotation of mirrors associated with the steering mechanisms. The walk-off effect may be mitigating by configuring more than one input waveguide to receiving returning signals associated with an output signal. The input waveguides may be spaced apart and configured to sequentially receive the input signals. In some embodiments, walk-off mitigation may extend a range of operation of the imaging systems.Type: GrantFiled: July 17, 2020Date of Patent: October 17, 2023Assignee: SiLC Technologies, Inc.Inventors: Prakash Koonath, Shuren Hu, Mehdi Asghari, Bradley Jonathan Luff, Behnam Behroozpour
-
Publication number: 20230228878Abstract: The imaging system includes a photonic circuit chip having multiple cores. Each of the cores includes an optical switch and multiple alternate waveguides. The optical switch in each core is configured to direct an outgoing light signal to any one of the alternate waveguides, the alternate waveguide to which the outgoing light signal is directed being an active waveguide. Each core outputs the outgoing LIDAR signal from the active waveguide while receiving an incoming LIDAR signal that includes light from the outgoing LIDAR signal, has exited from the imaging system, and has returned to the imaging system. Each core includes a signal splitter that receives the outgoing LIDAR signal and the incoming LIDAR signal. The signal splitter extracts a portion of the outgoing LIDAR signal that serves as a reference signal and at least a portion of the incoming LIDAR signal that serves as a comparative signal.Type: ApplicationFiled: May 31, 2022Publication date: July 20, 2023Inventors: Mehdi Asghari, Uttam Paudel, Behnam Behroozpour, George Nikolaev Guentchev
-
Patent number: 11624826Abstract: A LIDAR system is configured to output a system output signal that travels away from the LIDAR system and can be reflected by objects located outside of the LIDAR system. The system output signal has a frequency versus time pattern with a repeated cycle. Each cycle of the frequency versus time pattern includes multiple data periods configured such that the system output signal is chirped differently in different data periods. The LIDAR system also includes electronics configured to generate multiple different sets of LIDAR data. Each set of LIDAR data indicates a radial velocity and/or separation between the LIDAR system and one or more of the objects located outside of the LIDAR system. Each set of LIDAR data is generated from light that is included in the system output signal during a group of multiple data periods. The groups of data periods including one or more common data periods that are each included in two or more different groups of data periods.Type: GrantFiled: May 5, 2020Date of Patent: April 11, 2023Assignee: SiLC Technologies, Inc.Inventors: Behnam Behroozpour, Mehdi Asghari, Nirmal Chindhu Warke
-
Patent number: 11616922Abstract: An image sensor has a plurality of rows and columns of pixels, including RGB and bandpass I filters in a predetermined pattern shifted between adjacent columns so that none of the RGBI filters is adjacent the same type of filter. Each pixel includes a photodiode, a transfer gate and a floating diffusion. The transfer gate for all pixels in a pattern is controlled by the same signal, which can be a separate synchronous control signal controlled based on a predefined integration period or an asynchronous signal generated internally by the bandpass filter I and that is compared to a predefined voltage level indicative of a predetermined intensity at filter I. Upon activation of either signal, the integration period for the pixels ends and the charge on the floating diffusion for the R, G and B pixels is digitized in relation to the bandpass pixel I using a ratio-to-digital converter.Type: GrantFiled: December 7, 2018Date of Patent: March 28, 2023Assignee: Robert Bosch GmbHInventors: Ken Wojciechowski, Pedram Lajevardi, Behnam Behroozpour, Kristine Juliane Back
-
Patent number: 11581703Abstract: Systems and methods described herein are directed to optical light sources, such as an external cavity laser (ECL) with an active phase shifter. The system may include control circuitry for controlling one or more parameters associated with the active phase shifter. The phase shifter may be a p-i-n phase shifter. The control circuitry may cause variation in a refractive index associated with the phase shifter, thereby varying a lasing frequency of the ECL. The ECL may be configured to operate as a light source for a light detection and ranging (LIDAR) system based on generating frequency modulated light signals. In some embodiments, the ECL may generate an output LIDAR signal with alternating segments of increasing and decreasing chirp frequencies. The ECL may exhibit increased stability and improved chirp linearities with less dependence on ambient temperature fluctuations.Type: GrantFiled: September 20, 2020Date of Patent: February 14, 2023Assignee: SiLC Technologies, Inc.Inventors: Amir Ali Tavallaee, Behnam Behroozpour, Bradley Jonathan Luff, Mehdi Asghari
-
Patent number: 11509112Abstract: A Lidar system includes a tunable laser configured to generate an output light signal and a photodiode array for receiving light from the tunable laser reflected from a target object. The tunable laser includes a feedback loop including a Mach-Zender interferometer, MZI, receiving the output light signal from the tunable laser, in which the MZI includes two optical paths receiving the output light signal. A phase shifter is provided in one optical path that is operable to produce a pre-determined shift in the phase angle of the light signal passing through the one optical path relative to the phase angle of the light signal passing through the other optical path. A photodiode configured to detect the interference signal generated by the MZI is operable to generate a photodiode current in response thereto. Circuitry converts the photodiode current to a control signal for controlling the tunable laser.Type: GrantFiled: December 7, 2018Date of Patent: November 22, 2022Assignee: Robert Bosch GmbHInventors: Ken Wojciechowski, Behnam Behroozpour
-
Publication number: 20220107411Abstract: Systems and methods described herein are directed to polarization separation of laser signals and/or incoming light signals associated with an imaging system, such as a Light Detection and Ranging (LIDAR) system. Example embodiments describe a system configured to direct incoming light signals to a polarization separator and capturing the two polarization states of the incoming light signals. In some instances, the laser signal may be converted into two different polarization states. The system may individually process the two polarization states of the incoming light signals along with the corresponding polarization state of the laser reference signal to extract information associated with reflecting objects within the field-of-view of the imaging system. The polarization separator may be a birefringent crystal positioned adjacent to an edge of a photonic integrated circuit (PIC) that is used for processing outgoing and incoming light signals associated with the imaging system.Type: ApplicationFiled: October 4, 2020Publication date: April 7, 2022Inventors: Prakash Koonath, Shuren Hu, Mehdi Asghari, Bradley Jonathan Luff, Behnam Behroozpour
-
Publication number: 20220094140Abstract: Systems and methods described herein are directed to optical light sources, such as an external cavity laser (ECL) with an active phase shifter. The system may include control circuity for controlling one or more parameters associated with the active phase shifter. The phase shifter may be a p-i-n phase shifter. The control circuitry may cause variation in a refractive index associated with the phase shifter, thereby varying a lasing frequency of the ECL. The ECL may be configured to operate as a light source for a light detection and ranging (LIDAR) system based on generating frequency modulated light signals. In some embodiments, the ECL may generate an output LIDAR signal with alternating segments of increasing and decreasing chirp frequencies. The ECL may exhibit increased stability and improved chirp linearities with less dependence on ambient temperature fluctuations.Type: ApplicationFiled: September 20, 2020Publication date: March 24, 2022Inventors: Amir Ali Tavallaee, Behnam Behroozpour, Bradley Jonathan Luff, Mehdi Asghari
-
Patent number: 11240445Abstract: A 3D camera uses a modulated visible light source for depth imaging and includes a processor operable to perform time multiplexing between image detection and depth or time-of-flight (ToF) detection using the same photodetectors. The camera can alternate between the image detection mode and the ToF detection mode to produce a continuous stream of color and depth images that can be overlaid without the need for any post-processing software. The camera can also be configured to determine time-of-flight using analog integration modules, thereby minimizing the circuitry necessary for analog-to-digital conversions and ToF calculations in the digital domain.Type: GrantFiled: December 18, 2018Date of Patent: February 1, 2022Assignee: Robert Bosch GmbHInventors: Pedram Lajevardi, Behnam Behroozpour, Christoph Lang, Ken Wojciechowski
-
Publication number: 20220018963Abstract: Systems and methods described herein are directed to high speed remote imaging systems, such as Light Detection and Ranging (LIDAR) systems. Example embodiments describe systems that are configured to mitigate a walk-off effect that may limit a speed of operation of the imaging system. The walk-off effect may be characterized by a failure to steer returning signals to a designated input facet of the imaging system due to continuous rotation of mirrors associated with the steering mechanisms. The walk-off effect may be mitigating by configuring more than one input waveguide to receiving returning signals associated with an output signal. The input waveguides may be spaced apart and configured to sequentially receive the input signals. In some embodiments, walk-off mitigation may extend a range of operation of the imaging systems.Type: ApplicationFiled: July 17, 2020Publication date: January 20, 2022Applicant: SiLC Technologies, Inc.Inventors: Prakash Koonath, Shuren Hu, Mehdi Asghari, Bradley Jonathan Luff, Behnam Behroozpour
-
Publication number: 20210356592Abstract: A LIDAR system includes at least one optical component configured to output a system output signal that travels away from the LIDAR system and can be reflected by an object located outside of the LIDAR system. The LIDAR system also includes a control mechanism configured to control one or more process variables of the system output signal. The control mechanism uses an electrical process variable signal to control the process variable. The process variable signal has an in-phase component and a quadrature component.Type: ApplicationFiled: May 16, 2020Publication date: November 18, 2021Inventor: Behnam Behroozpour
-
Publication number: 20210349216Abstract: A LIDAR system is configured to output a system output signal that travels away from the LIDAR system and can be reflected by objects located outside of the LIDAR system. The system output signal has a frequency versus time pattern with a repeated cycle. Each cycle of the frequency versus time pattern includes multiple data periods configured such that the system output signal is chirped differently in different data periods. The LIDAR system also includes electronics configured to generate multiple different sets of LIDAR data. Each set of LIDAR data indicates a radial velocity and/or separation between the LIDAR system and one or more of the objects located outside of the LIDAR system. Each set of LIDAR data is generated from light that is included in the system output signal during a group of multiple data periods. The groups of data periods including one or more common data periods that are each included in two or more different groups of data periods.Type: ApplicationFiled: May 5, 2020Publication date: November 11, 2021Inventors: Behnam Behroozpour, Mehdi Asghari, Nirmal Chindhu Warke