Patents by Inventor Behrooz Abiri

Behrooz Abiri has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160097715
    Abstract: A sensor includes, in part, a multitude of splitters/couplers and optical couplers. One of the splitter/couplers splits an incoming optical signal into first and second optical signals. A first optical coupler includes, in part, a through path receiving the first signal, a coupled path, and an exposure window receiving a sample undergoing sensing by the sensor. The second optical coupler includes, in part, a through path receiving the second signal, and a coupled path. A first output port of the sensor supplies the optical signal travelling in the through path of the first optical coupler. A second splitter/coupler combines the optical signals travelling in the coupled paths of the first and second optical couplers to generate a second output signal delivered to a second output port. An optional third output port supplies the optical signal travelling in the through path of the second optical coupler.
    Type: Application
    Filed: April 17, 2015
    Publication date: April 7, 2016
    Inventors: Behrooz ABIRI, Firooz Aflatouni, Seyed Ali Hajimiri
  • Publication number: 20160033766
    Abstract: An optical phased array (OPA) receiver selectively detects, measures and differentiates between the amplitudes and directions of signals received from different directions. Because the OPA changes the direction that it looks toward electronically and without the use of any mechanical movements, the OPA is fast, has an enhanced sensitivity, and can be used in a wide variety applications, such as lens-free imaging systems. The OPA is adapted to dynamically control the array of optical elements and focus on the area of interest. The OPA achieves a higher numerical aperture compared to imaging systems that use conventional lens, thereby effectively maintaining a relatively large field of view and collection area concurrently. The OPA may be readily scaled by increasing its array size. Furthermore, because the OPA is relatively flat, it is ideally suited for small form factor applications such as cell phones and tablets.
    Type: Application
    Filed: May 4, 2015
    Publication date: February 4, 2016
    Inventors: Seyed Ali HAJIMIRI, Behrooz ABIRI
  • Patent number: 9250453
    Abstract: An integrated optical linewidth reduction system includes a phase modulator adapted to modulate the phase of an incoming optical signal in response to a feedback control signal defined by a first electrical signal. The phase modulator is further adapted to generate a first optical signal travelling through a first optical path. The first electrical signal is representative of a phase noise of the first optical signal. An optical linewidth of the first optical signal is less than an optical linewidth of the incoming optical signal.
    Type: Grant
    Filed: April 15, 2013
    Date of Patent: February 2, 2016
    Assignee: California Institute of Technology
    Inventors: Firooz Aflatouni, Behrooz Abiri, Seyed Ali Hajimiri
  • Publication number: 20150331193
    Abstract: A self-equalizing photo-detector (SEPD) includes, in part, a multitude of optical splitters and photo detectors, and at least one optical delay element. The first optical splitter splits an optical signal into second and third optical signals. The optical delay element delays the second optical signal to generate a fourth optical signal. The second optical splitter splits a signal representative of the fourth optical signal to generate fifth and sixth optical signals. The first photo detector receives the third optical signal via a first optical path, has an anode terminal coupled to an output terminal of the detector and a cathode terminal coupled to a first supply voltage. The second photo detector receives the sixth optical signal via a second optical path, has an anode terminal coupled to a second supply voltage and a cathode terminal coupled to the output terminal of the detector.
    Type: Application
    Filed: May 19, 2015
    Publication date: November 19, 2015
    Inventors: Behrooz Abiri, Seyed Ali Hajimiri, Firooz Aflatouni, Andy Zhou
  • Patent number: 9124373
    Abstract: An integrated optical phased array includes an input channel receiving an optical input signal, and a multitude of signal processing channels each adapted to supply an associated optical output signal along a first axis in response to the input signal. Each signal processing channel includes, in part, a phase modulator adapted to modulate the phase of the signal travelling through the channel, thereby to control or steer the output signal of the phased array. Each channel optionally includes first and second photo detection circuits respectively generating first and second detection signals. The first and second detection signals in each channel may be used to modulate the amplitude and/or phase of the output signal of that channel thereby to control and steer the output signal of the phased array.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: September 1, 2015
    Assignee: California Institute of Technology
    Inventors: Firooz Aflatouni, Behrooz Abiri, Seyed Ali Hajimiri
  • Patent number: 9081252
    Abstract: An optical phased array includes, in part, a multitude of optical signal emitters and a multitude of optical signal phase/delay elements each associated with and disposed between a different pair of the optical signal emitters. Each optical signal phase/delay element is adapted to cause a phase/delay shift between the optical signals emitted from its associated pair of optical signal emitters. Each optical signal phase/delay element is optically a ring resonator that includes a p-i-n junction. By varying the bias applied to the p-i-n junction, the phase/delay generated by the ring resonator is varied. Furthermore, each optical signal emitter is optionally an optical grating having a multitude of grooves. The groove lengths of the optical gratings are optionally selected so as to increase along the direction of travel of the input optical signal through the optical phase array.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: July 14, 2015
    Assignee: California Institute of Technology
    Inventors: Firooz Aflatouni, Behrooz Abiri, Seyed Ali Hajimiri
  • Publication number: 20150145350
    Abstract: A rectifying circuit includes, in part, first and second NMOS transistors, an impedance matching network, and an RF block circuit. The source and gate terminals of the first NMOS transistor respectively receive the ground potential and a biasing voltage. The second NMOS transistor has a gate terminal coupled to the drain terminal of the first NMOS transistor, a drain terminal coupled to the gate terminal of the first NMOS transistor, and a source terminal receiving the ground potential. The impedance matching network is disposed between the antenna and the drain terminals of the first and second NMOS transistors. The RF block circuit is coupled between the drain terminals of the first and second NMOS transistors and the output terminal of the rectifying circuit. The RF block circuit is adapted to prevent the RF signal from flowing into the output terminal of the rectifying circuit.
    Type: Application
    Filed: November 24, 2014
    Publication date: May 28, 2015
    Inventors: Seyed Ali HAJIMIRI, Behrooz ABIRI, Florian BOHN
  • Publication number: 20150130293
    Abstract: An RF signal generator wirelessly transferring power to a wireless device includes, in part, a multitude of generating elements generating a multitude of RF signals transmitted by a multitude of antennas, a wireless signal receiver, and a control unit controlling the phases and/or amplitudes of the RF signals in accordance with a signal received by the receiver. The signal received by the receiver includes, in part, information representative of the amount of RF power the first wireless device receives. The RF signal generator further includes, in part, a detector detecting an RF signal caused by scattering or reflection of the RF signal transmitted by the antennas. The control unit further controls the phase and/or amplitude of the RF signals in accordance with the signal detected by the detector.
    Type: Application
    Filed: November 24, 2014
    Publication date: May 14, 2015
    Inventors: Seyed Ali HAJIMIRI, Florian Bohn, Behrooz Abiri
  • Publication number: 20150104191
    Abstract: An electro-optical oscillator includes, in part, a modulator, a signal splitter, N photodiodes with N being an integer greater than one, a signal combiner, and a filter. The modulator modulates an optical signal in accordance with a feedback signal. The splitter splits the modulated optical signal into N optical signals each delivered to a different one of N photo-diodes. Each of the N photo-diodes converts the optical signal it receives to a current signal. The signal combiner combines the N current signals received from the N photo-diodes to generate a combined current signal. The filter filters the combined current signal and generates the feedback signal. The electro-optical oscillator optionally includes, in part, N variable optical gain/attenuation components each amplifying/attenuating a different one of the N optical signals generated by the splitter.
    Type: Application
    Filed: September 17, 2014
    Publication date: April 16, 2015
    Inventors: Seyed Ali HAJIMIRI, Firooz AFLATOUNI, Behrooz ABIRI
  • Publication number: 20150078754
    Abstract: An opto-electrical oscillator includes, in part, first and second optical phase modulators, a coupler, an optical-to-electrical signal conversion circuit, and a control circuit. The first optical phase modulator modulates the phase of a first optical signal in response to a first feedback signal to generate a first phase modulated signal. The second optical phase modulator modulates the phase of a second optical signal in response to a second feedback signal to generate a second phase modulated signal. The first and second optical signals travel through first and second optical paths respectively and are generated from the same optical source. The optical-to-electrical signal conversion circuit receives an optical signal from the coupler and in response generates an electrical signal applied to the control circuit. The output signals of the control circuit cause the first and second feedback signals to be out of phase.
    Type: Application
    Filed: September 13, 2013
    Publication date: March 19, 2015
    Applicant: California Institute of Technology
    Inventors: Firooz AFLATOUNI, Behrooz Abiri, Seyed Ali Hajimiri
  • Publication number: 20140161464
    Abstract: A multi-port radiator radiates electromagnetic signal in response to a beat frequency of a pair of optical signals. The radiator includes a multitude of optical paths each carrying an optical signal having first and second wavelengths. A multitude of frequency conversion elements convert the optical signals to electrical signals and deliver them to the radiator's multiple ports. The frequency of the electrical signals, and hence the frequency of the electromagnetic wave, is defined by the difference between the first and second wavelengths. The phases of the optical signals received by the frequency conversion elements are shifted with respect to one another. Optionally, the difference between the phases of the optical signals travelling through each pair of adjacent paths is 90°. The first and second wavelengths are generated by a pair of optical sources and are optionally modulated before being combined and delivered to the optical paths.
    Type: Application
    Filed: July 26, 2013
    Publication date: June 12, 2014
    Applicant: California Institute of Technology
    Inventors: Steven BOWERS, Firooz AFLATOUNI, Behrooz ABIRI, Seyed Ali HAJIMIRI
  • Publication number: 20140071249
    Abstract: A camera includes, in part, an optical signal source generating a frequency varying optical signal, a multitude of pixels arranged along rows and columns, an optical focusing element, and an opto-electronic circuit. A portion of the optical signal generated by the optical signal is caused to reflect from a target object and then directed toward the pixels. A multitude of samples of a second portion of the optical signal are combined with the signals received by the pixels to generate a multitude of combined optical signals. The optical signals so combined are converted to electrical signals. Each electrical signal has a frequency defined by a difference between a frequency of the second portion of the optical signal and a frequency of a signal received from a pixel. The frequency differences are used to form an image of the target object.
    Type: Application
    Filed: September 13, 2013
    Publication date: March 13, 2014
    Applicant: California Institute of Technology
    Inventors: Firooz AFLATOUNI, Behrooz Abiri, Seyed Ali Hajimiri
  • Publication number: 20130322892
    Abstract: An integrated optical phased array includes an input channel receiving an optical input signal, and a multitude of signal processing channels each adapted to supply an associated optical output signal along a first axis in response to the input signal. Each signal processing channel includes, in part, a phase modulator adapted to modulate the phase of the signal travelling through the channel, thereby to control or steer the output signal of the phased array. Each channel optionally includes first and second photo detection circuits respectively generating first and second detection signals. The first and second detection signals in each channel may be used to modulate the amplitude and/or phase of the output signal of that channel thereby to control and steer the output signal of the phased array.
    Type: Application
    Filed: November 21, 2012
    Publication date: December 5, 2013
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Firooz Aflatouni, Behrooz Abiri, Seyed Ali Hajimiri