Patents by Inventor Behsan Behzadi

Behsan Behzadi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11965983
    Abstract: A light detection and ranging (LIDAR) apparatus is provided that includes an optical source to emit an optical beam towards a target and a mode field expander operatively coupled to the optical source to expand a mode area of the optical beam from a first mode of a single mode optical fiber to a second mode of a larger mode area optical fiber.
    Type: Grant
    Filed: May 27, 2022
    Date of Patent: April 23, 2024
    Assignee: Aeva, Inc.
    Inventors: Behsan Behzadi, Keith Gagne, Oguzhan Avci, Omer P. Kocaoglu, Neal N. Oza, Mina Rezk
  • Patent number: 11960032
    Abstract: A light detection and ranging (LIDAR) system includes an optical source to emit a corresponding plurality of optical beams with synchronized chirp rates and synchronized chirp durations. The plurality of optical beams are each tuned to produce regions of constructive and destructive interference into a combined optical beam. A first optical component forms a phase-locked loop to correct nonlinearities detected in the plurality of optical beams. A second optical component transmits a combined optical beam toward a target environment and receives a target return signal. A third optical component downconverts the target return signal to a plurality of fixed frequency downconverted target return signals, each including a target range component and a target velocity component.
    Type: Grant
    Filed: December 30, 2021
    Date of Patent: April 16, 2024
    Assignee: Aeva, Inc.
    Inventors: Behsan Behzadi, Neal N. Oza, Oguzhan Avci, Keith Gagne, Mina Rezk
  • Patent number: 11940571
    Abstract: A method of operating a light detection and ranging (LIDAR) system is provided that includes generating a beam of polarized light; and transforming a polarization state of the beam of polarized light at a rate faster than a rate of data collection at a plurality of detectors configured to detect light reflected from a target for the purpose of speckle-reduction.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: March 26, 2024
    Assignee: Aeva, Inc.
    Inventors: Neal N. Oza, Omer P. Kocaoglu, Behsan Behzadi, Oguzhan Avci, Keith Gagne, Mina Rezk
  • Patent number: 11927699
    Abstract: A light detection and ranging (LIDAR) system includes optical sources to emit a continuous-wave (CW) optical beam and a frequency-modulated CW (FMCW) optical beam, a first and second optical coupler to generate a CW local oscillator (LO), and an FMCW LO signal. The system further includes a first optical component to combine the CW optical beam and the FMCW optical beam, a second optical component to transmit the combined optical beam toward a target, a third optical component to split a target return signal into a CW return signal and a FMCW return signal based on polarization or frequency, a first optical detector to detect a first beat frequency from a combination of the CW LO signal and the CW return signal, and a second optical detector to detect a second beat frequency from a combination of the FMCW LO and the FMCW return signal.
    Type: Grant
    Filed: April 28, 2022
    Date of Patent: March 12, 2024
    Assignee: Aeva, Inc.
    Inventors: Oguzhan Avci, Omer P. Kocaoglu, Neal N. Oza, Keith Gagne, Behsan Behzadi, Mina Rezk
  • Publication number: 20240019553
    Abstract: A light detection and ranging (LIDAR) apparatus including free space optics to combine a target signal and a local oscillator signal to generate a combined signal. The LIDAR system also includes a set of multi-mode (MM) waveguides and a demultiplexer including a dispersive element. The demultiplexer configured to disperse, via the dispersive element, each respective wavelength of the combined signal at a corresponding angle, and reflect each respective wavelength of the combined signal to a corresponding MM waveguide of the set of MM waveguides.
    Type: Application
    Filed: August 3, 2023
    Publication date: January 18, 2024
    Inventors: Behsan Behzadi, Omer P. Kocaoglu, Keith Gagne, Oguzhan Avci, Neal N. Oza, Mina Rezk
  • Publication number: 20230417882
    Abstract: A method of operating a frequency-modulated continuous wave (FMCW) light detection and ranging (LIDAR) system is provided. The method includes transmitting a beam of co-propagating, cross-polarized light to a target. The method includes receiving return light reflected from the target by at least one detector. The method further includes transforming a polarization state of the beam at a transformation rate faster than a data collection rate from the at least one detector.
    Type: Application
    Filed: September 13, 2023
    Publication date: December 28, 2023
    Inventors: Neal N. Oza, Omer P. Kocaoglu, Behsan Behzadi, Oguzhan Avci, Keith Gagne, Mina Rezk
  • Publication number: 20230408655
    Abstract: A LiDAR system includes an optical subsystem with an optical axis. The optical subsystem includes an optical source to emit an optical beam, a first optical lens to transmit the optical beam, an optical window to reflect a first portion of the optical beam to generate a LO signal, an optical scanner to transmit a second portion of the optical beam to a target to scan the target to generate a target return signal, where the LO signal is disposed to be decentered from the optical axis on a second optical lens in front of a photodetector (PD) to increase a percentage of an overlap of the LO signal and the target return signal on the PD.
    Type: Application
    Filed: December 7, 2022
    Publication date: December 21, 2023
    Inventors: Keith Gagne, Adrian Cort, Oguzhan Avci, Kevin Pollock, Pierre Hicks, Mina Rezk, Behsan Behzadi, Gautam Prabhakar
  • Patent number: 11768280
    Abstract: A light detection and ranging (LIDAR) system includes an optical source to emit an optical beam, where a local oscillator (LO) signal is generated from a partial reflection of the optical beam from a partially-reflecting surface proximate to the first focal plane, and where a transmitted portion of the optical beam is directed toward a scanned target environment. LIDAR system to focus the LO signal and a target return signal at a second focal plane comprising a conjugate focal plane to the first focal plane. The system may also include a photodetector with a photosensitive surface proximate to the conjugate focal plane to mix the LO signal with the target return signal to generate target information.
    Type: Grant
    Filed: December 17, 2020
    Date of Patent: September 26, 2023
    Assignee: Aeva, Inc.
    Inventors: Keith Gagne, Oguzhan Avci, Behsan Behzadi, Mina Rezk, Kevin Pollock, Pierre Hicks, Gautam Prabhakar
  • Patent number: 11762069
    Abstract: A method is provided that transmits a beam of co-propagating, cross-polarized light to a target. The method receives return light reflected from the target, which includes a first polarization and a second polarization. The method splits the return light into a first output corresponding to the first polarization and a second output corresponding to the second polarization using a first beam splitter. The method directs the first output to a first detector and directs the second output to a second detector. The method generates, by the first detector, a first electrical signal corresponding to the first polarization, and generates, by the second detector, a second electrical signal corresponding to the second polarization. The method determines an orientation of the target based on the first electrical signal and the second electrical signal, and generates a point cloud based on the orientation of the target.
    Type: Grant
    Filed: November 11, 2022
    Date of Patent: September 19, 2023
    Assignee: Aeva, Inc.
    Inventors: Neal N. Oza, Omer P. Kocaoglu, Behsan Behzadi, Oguzhan Avci, Keith Gagne, Mina Rezk
  • Patent number: 11754681
    Abstract: A light detection and ranging (LIDAR) apparatus is provided that includes an optical source configured to emit an optical beam. The LIDAR apparatus further includes free space optics configured to receive a first portion of the optical beam as a target signal and a second portion of the optical beam as a local oscillator signal, and combine the target signal and the local oscillator signal. The LIDAR apparatus includes a multi-mode (MM) waveguide configured to receive the combined signal.
    Type: Grant
    Filed: April 4, 2019
    Date of Patent: September 12, 2023
    Assignee: Aeva, Inc.
    Inventors: Behsan Behzadi, Omer P. Kocaoglu, Keith Gagne, Oguzhan Avci, Neal N. Oza, Mina Rezk
  • Patent number: 11740340
    Abstract: A light detection and ranging (LIDAR) apparatus includes an optical circuit including an optical source to transmit an optical beam, a first optical component to generate a local oscillator from the optical beam, a first optical amplifier to amplify a return signal to generate an amplified return signal, wherein a power level of the local oscillator is comparable to a power of amplified spontaneous emission of the first optical amplifier, and an optical detector operatively coupled to the first optical amplifier, the optical detector configured to output an electrical signal based on the amplified return signal and the local oscillator.
    Type: Grant
    Filed: May 27, 2022
    Date of Patent: August 29, 2023
    Assignee: Aeva, Inc.
    Inventors: Behsan Behzadi, Mina Rezk
  • Patent number: 11698444
    Abstract: A LiDAR system includes an optical source to emit an optical beam, an optical window to reflect a first portion of the optical beam to generate an LO signal, and an optical scanner to transmit a second portion of the optical beam to a target to scan the target to generate a target return signal. The LiDAR system includes a birefringent crystal plate to transmit the LO signal and the target return signal to a PD and shift the LO signal and the target return signal by different displacements to increase a percentage of an overlap of the LO signal and the target return signal on a detection plane of the PD. The LiDAR system includes the PD to mix the target return signal with the LO signal on the detection plane of the PD to generate a heterodyne signal to extract range and velocity information of the target.
    Type: Grant
    Filed: August 18, 2022
    Date of Patent: July 11, 2023
    Assignee: Aeva, Inc.
    Inventors: Ashwin Kumar Samarao, Oguzhan Avci, Behsan Behzadi
  • Publication number: 20230068524
    Abstract: A method is provided that transmits a beam of co-propagating, cross-polarized light to a target. The method receives return light reflected from the target, which includes a first polarization and a second polarization. The method splits the return light into a first output corresponding to the first polarization and a second output corresponding to the second polarization using a first beam splitter. The method directs the first output to a first detector and directs the second output to a second detector. The method generates, by the first detector, a first electrical signal corresponding to the first polarization, and generates, by the second detector, a second electrical signal corresponding to the second polarization. The method determines an orientation of the target based on the first electrical signal and the second electrical signal, and generates a point cloud based on the orientation of the target.
    Type: Application
    Filed: November 11, 2022
    Publication date: March 2, 2023
    Inventors: Neal N. Oza, Omer P. Kocaoglu, Behsan Behzadi, Oguzhan Avci, Keith Gagne, Mina Rezk
  • Publication number: 20230049443
    Abstract: Free-space optics for use in a light detection and ranging (LIDAR) apparatus include a polarization beam-splitter (PBS) to direct an optical beam in a first direction toward a target environment and to propagate a portion of the optical beam in a second direction for receipt by a photodetector (PD), a polarization wave plate (PWP) to convert the optical beam from a first polarization to a second polarization, and to convert the target return signal from a third polarization to a fourth polarization, and a lens system coupled between the PBS and the PWP to magnify the optical beam. The propagated portion of the optical beam comprises a local oscillator (LO) signal to mix with a target return signal to generate target information.
    Type: Application
    Filed: November 1, 2022
    Publication date: February 16, 2023
    Inventors: Oguzhan Avci, Omer P. Kocaoglu, Neal N. Oza, Keith Gagne, Behsan Behzadi, Mina Rezk
  • Publication number: 20230049568
    Abstract: A light detection and ranging (LIDAR) system has a modulator to modulate a light signal from an optical source with a low-power mode at a section of a sweep signal to generate a pulsed light signal transmitted towards a target. The LIDAR system has a photodetector to receive a return beam from the target with an amplitude modulated (AM) signal portion and a frequency modulated (FM) signal portion. The LIDAR system processes the return beam with in-phase/quadrature (I/Q) detection to extract the AM signal portion and the FM signal portion. The system determines a range value and a velocity value for the target based on the extracted AM signal portion and the extracted FM signal portion.
    Type: Application
    Filed: November 1, 2022
    Publication date: February 16, 2023
    Inventors: Behsan BEHZADI, Mina REZK, Kumar Bhargav VISWANATHA, Esha JOHN
  • Publication number: 20230015081
    Abstract: A light detection and ranging (LIDAR) apparatus is provided that includes a dispersive element and an optical circuit. The optical circuit is to emit a first optical beam having a first frequency and a second optical beam having a second frequency towards the dispersive element to deflect the first optical beam and the second optical beam based on a frequency.
    Type: Application
    Filed: September 27, 2022
    Publication date: January 19, 2023
    Inventors: Mina Rezk, Omer P. Kocaoglu, Oguzhan Avci, Neal N. Oza, Keith Gagne, Behsan Behzadi
  • Publication number: 20230003896
    Abstract: A light detection and ranging (LIDAR) system has an active modulator to modulate a light signal from an optical source with a low-power mode at a section of a sweep signal to generate a pulsed light signal transmitted towards a target. The LIDAR system has a photodetector to receive a return beam from the target with an amplitude modulated (AM) signal portion and a frequency modulated (FM) signal portion. The LIDAR system determines a target range value for the target based on the AM signal portion and determines a target velocity value for the target based on the FM signal portion.
    Type: Application
    Filed: September 6, 2022
    Publication date: January 5, 2023
    Inventors: Behsan BEHZADI, Mina REZK, Kumar Bhargav VISWANATHA, Esha JOHN
  • Patent number: 11536813
    Abstract: A LiDAR system includes an optical subsystem with an optical axis. The optical subsystem includes an optical source to emit an optical beam, a first optical lens to transmit the optical beam, an optical window to reflect a first portion of the optical beam to generate a LO signal, an optical scanner to transmit a second portion of the optical beam to a target to scan the target to generate a target return signal, a second optical lens to transmit the LO signal and the target return signal to a PD, and the PD to mix the target return signal with the LO signal to extract range and velocity information. The LO signal is disposed to be decentered from the optical axis on the second optical lens to increase a percentage of an overlap of the LO signal and the target return signal on a detection plane of the PD.
    Type: Grant
    Filed: June 16, 2022
    Date of Patent: December 27, 2022
    Inventors: Keith Gagne, Adrian Cort, Oguzhan Avci, Kevin Pollock, Pierre Hicks, Mina Rezk, Behsan Behzadi, Gautam Prabhakar
  • Patent number: 11525916
    Abstract: A light detection and ranging (LIDAR) apparatus includes an optical source to emit an optical beam, and free-space optics coupled with the optical source. The free space optics include a photodetector and other optical components to direct a propagated portion of the optical beam or a reflected portion of the optical beam toward the photodetector as a local oscillator signal, and to transmit the optical beam toward a target environment.
    Type: Grant
    Filed: September 21, 2021
    Date of Patent: December 13, 2022
    Assignee: Aeva, Inc.
    Inventors: Oguzhan Avci, Omer P. Kocaoglu, Neal N. Oza, Keith Gagne, Behsan Behzadi, Mina Rezk
  • Patent number: 11525901
    Abstract: A method of operating a light detection and ranging (LIDAR) system is provided that includes generating a beam of co-propagating, cross-polarized light using a first polarizing beam splitter; and determining a material characteristic or orientation of a target using the co-propagating, cross-polarized light.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: December 13, 2022
    Assignee: Aeva, Inc.
    Inventors: Neal N. Oza, Omer P. Kocaoglu, Behsan Behzadi, Oguzhan Avci, Keith Gagne, Mina Rezk