Patents by Inventor Behsan Behzadi

Behsan Behzadi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250102680
    Abstract: A light detection and ranging (LIDAR) system has a passive modulator to modulate a light signal from an optical source with a low-power mode at a section of a sweep signal to generate a pulsed light signal transmitted towards a target. The LIDAR system has a photodetector to receive a return beam from the target with an amplitude modulated (AM) signal portion and a frequency modulated (FM) signal portion. The LIDAR system determines a target range value for the target based on the AM signal portion and determines a target velocity value for the target based on the FM signal portion.
    Type: Application
    Filed: October 8, 2024
    Publication date: March 27, 2025
    Inventors: Behsan BEHZADI, Mina REZK, Kumar Bhargav VISWANATHA, Esha JOHN
  • Publication number: 20250093475
    Abstract: A light detection and ranging (LIDAR) apparatus including free space optics to combine a target signal and a local oscillator signal to generate a combined signal. The LIDAR system also includes a set of multi-mode (MM) waveguides and a demultiplexer including a dispersive element. The demultiplexer configured to disperse, via the dispersive element, each respective wavelength of the combined signal at a corresponding angle, and reflect each respective wavelength of the combined signal to a corresponding MM waveguide of the set of MM waveguides.
    Type: Application
    Filed: December 5, 2024
    Publication date: March 20, 2025
    Inventors: Behsan Behzadi, Omer P. Kocaoglu, Keith Gagne, Oguzhan Avci, Neal N. Oza, Mina Rezk
  • Patent number: 12216208
    Abstract: Free-space optics for use in a light detection and ranging (LIDAR) apparatus include a polarization beam-splitter (PBS) to direct an optical beam in a first direction toward a target environment and to propagate a portion of the optical beam in a second direction for receipt by a photodetector (PD), a polarization wave plate (PWP) to convert the optical beam from a first polarization to a second polarization, and to convert the target return signal from a third polarization to a fourth polarization, and a lens system coupled between the PBS and the PWP to magnify the optical beam. The propagated portion of the optical beam comprises a local oscillator (LO) signal to mix with a target return signal to generate target information.
    Type: Grant
    Filed: November 1, 2022
    Date of Patent: February 4, 2025
    Assignee: Aeva, Inc.
    Inventors: Oguzhan Avci, Omer P. Kocaoglu, Neal N. Oza, Keith Gagne, Behsan Behzadi, Mina Rezk
  • Patent number: 12174321
    Abstract: A light detection and ranging (LIDAR) apparatus including free space optics to combine a target signal and a local oscillator signal to generate a combined signal. The LIDAR system also includes a set of multi-mode (MM) waveguides and a demultiplexer including a dispersive element. The demultiplexer configured to disperse, via the dispersive element, each respective wavelength of the combined signal at a corresponding angle, and reflect each respective wavelength of the combined signal to a corresponding MM waveguide of the set of MM waveguides.
    Type: Grant
    Filed: August 3, 2023
    Date of Patent: December 24, 2024
    Assignee: Aeva, Inc.
    Inventors: Behsan Behzadi, Omer P. Kocaoglu, Keith Gagne, Oguzhan Avci, Neal N. Oza, Mina Rezk
  • Publication number: 20240418840
    Abstract: A light detection and ranging (LIDAR) apparatus is provided that includes a dispersive element and an optical circuit. The optical circuit includes optics to project an optical beam onto a field of view and the dispersive element, operatively coupled with the optics, is to deflect the optical beam based on a wavelength of the optical beam, wherein the dispersive element shifts the field of view across a target in response to changes of the wavelength of the optical beam.
    Type: Application
    Filed: August 30, 2024
    Publication date: December 19, 2024
    Inventors: Mina Rezk, Omer P. Kocaoglu, Oguzhan Avci, Neal N. Oza, Keith Gagne, Behsan Behzadi
  • Publication number: 20240410984
    Abstract: A photonics grating coupler to transmit light in a light detection and ranging (LiDAR) system includes a receiver component adapted to receive light transmitted from an optical source. The photonics grating coupler includes a plurality of light scattering elements arranged in a rectangular pattern, wherein the plurality of light scattering elements comprises a first set of light scattering elements, each light scattering element comprising a first cross section and a first duty cycle and adapted to receive the light from the receiver to produce reflected light. The photonics grating coupler also includes a second set of light scattering elements, each light scattering element comprising a second cross section and a second duty cycle and adapted to transmit the reflected light towards a waveguide coupled to receive the reflected light.
    Type: Application
    Filed: June 8, 2023
    Publication date: December 12, 2024
    Inventors: Behsan Behzadi, Bing Shen
  • Patent number: 12111400
    Abstract: A light detection and ranging (LIDAR) system has a passive modulator to modulate a light signal from an optical source with a low-power mode at a section of a sweep signal to generate a pulsed light signal transmitted towards a target. The LIDAR system has a photodetector to receive a return beam from the target with an amplitude modulated (AM) signal portion and a frequency modulated (FM) signal portion. The LIDAR system determines a target range value for the target based on the AM signal portion and determines a target velocity value for the target based on the FM signal portion.
    Type: Grant
    Filed: August 4, 2022
    Date of Patent: October 8, 2024
    Assignee: Aeva, Inc.
    Inventors: Behsan Behzadi, Mina Rezk, Kumar Bhargav Viswanatha, Esha John
  • Patent number: 12078759
    Abstract: A light detection and ranging (LIDAR) apparatus is provided that includes a dispersive element and an optical circuit. The optical circuit is to emit a first optical beam having a first frequency and a second optical beam having a second frequency towards the dispersive element to deflect the first optical beam and the second optical beam based on a frequency.
    Type: Grant
    Filed: September 27, 2022
    Date of Patent: September 3, 2024
    Assignee: AEVA, Inc.
    Inventors: Mina Rezk, Omer P. Kocaoglu, Oguzhan Avci, Neal N. Oza, Keith Gagne, Behsan Behzadi
  • Publication number: 20240288560
    Abstract: A LiDAR system includes an optical source to emit an optical beam toward a target, a partially reflective surface to generate a local oscillator (LO) signal from the optical beam, and an optical lens disposed in front of a photodetector (PD), wherein the LO signal is incident at a decenter of the optical lens to shift the LO signal at the photodetector with respect to a return signal received from the target.
    Type: Application
    Filed: May 6, 2024
    Publication date: August 29, 2024
    Inventors: Keith Gagne, Adrian Cort, Oguzhan Avci, Kevin Pollock, Pierre Hicks, Mina Rezk, Behsan Behzadi, Gautam Prabhakar
  • Patent number: 12066536
    Abstract: A light detection and ranging (LiDAR) system according to the present disclosure comprises an optical circulator and one or more photodetectors (PDs). The optical circulator is to transmit the target return signal to the one or more PDs, where the one or more PDs are to mix the target return signal with a local oscillator (LO) signal to generate a signal to extract information of the target.
    Type: Grant
    Filed: May 19, 2021
    Date of Patent: August 20, 2024
    Assignee: Aeva, Inc.
    Inventors: Gautam Prabhakar, Behsan Behzadi, Oguzhan Avci, Keith Gagne, Kevin Pollock, Pierre Hicks, Mina Rezk
  • Publication number: 20240248184
    Abstract: A light detection and ranging (LIDAR) system includes optical sources to emit a continuous-wave (CW) optical beam and a frequency-modulated CW (FMCW) optical beam, an optical component to split a target return signal into a CW return signal and a FMCW return signal, and at least one optical detector to detect a first beat frequency from a combination of a CW local oscillator (LO) signal and the CW return signal, and a second beat frequency from a combination of a FMCW LO signal and the FMCW return signal, wherein the first beat frequency is associated with a velocity of a target and the second beat frequency is associated with a range of the target.
    Type: Application
    Filed: March 11, 2024
    Publication date: July 25, 2024
    Inventors: Oguzhan Avci, Omer P. Kocaoglu, Neal N. Oza, Keith Gagne, Behsan Behzadi, Mina Rezk
  • Publication number: 20240230868
    Abstract: A method of operating a light detection and ranging (LIDAR) system is provided that includes combining a first optical beam and a second optical beam into a combined optical beam of co-propagating, cross-polarized light, and transforming a polarization state of the first optical beam and the second optical beam of the combined optical beam at a rate faster than a rate of data collection at a plurality of detectors configured to detect light reflected from a target.
    Type: Application
    Filed: March 25, 2024
    Publication date: July 11, 2024
    Inventors: Neal N. Oza, Omer P. Kocaoglu, Behsan Behzadi, Oguzhan Avci, Keith Gagne, Mina Rezk
  • Patent number: 12013466
    Abstract: A light detection and ranging (LIDAR) system has an active modulator to modulate a light signal from an optical source with a low-power mode at a section of a sweep signal to generate a pulsed light signal transmitted towards a target. The LIDAR system has a photodetector to receive a return beam from the target with an amplitude modulated (AM) signal portion and a frequency modulated (FM) signal portion. The LIDAR system determines a target range value for the target based on the AM signal portion and determines a target velocity value for the target based on the FM signal portion.
    Type: Grant
    Filed: September 6, 2022
    Date of Patent: June 18, 2024
    Assignee: Aeva, Inc.
    Inventors: Behsan Behzadi, Mina Rezk, Kumar Bhargav Viswanatha, Esha John
  • Patent number: 11994594
    Abstract: A light detection and ranging (LIDAR) system has a modulator to modulate a light signal from an optical source with a low-power mode at a section of a sweep signal to generate a pulsed light signal transmitted towards a target. The LIDAR system has a photodetector to receive a return beam from the target with an amplitude modulated (AM) signal portion and a frequency modulated (FM) signal portion. The LIDAR system processes the return beam with in-phase/quadrature (I/Q) detection to extract the AM signal portion and the FM signal portion. The system determines a range value and a velocity value for the target based on the extracted AM signal portion and the extracted FM signal portion.
    Type: Grant
    Filed: November 1, 2022
    Date of Patent: May 28, 2024
    Assignee: Aeva, Inc.
    Inventors: Behsan Behzadi, Mina Rezk, Kumar Bhargav Viswanatha, Esha John
  • Patent number: 11977187
    Abstract: A LiDAR system includes an optical subsystem with an optical axis. The optical subsystem includes an optical source to emit an optical beam, a first optical lens to transmit the optical beam, an optical window to reflect a first portion of the optical beam to generate a LO signal, an optical scanner to transmit a second portion of the optical beam to a target to scan the target to generate a target return signal, where the LO signal is disposed to be decentered from the optical axis on a second optical lens in front of a photodetector (PD) to increase a percentage of an overlap of the LO signal and the target return signal on the PD.
    Type: Grant
    Filed: December 7, 2022
    Date of Patent: May 7, 2024
    Assignee: Aeva, Inc.
    Inventors: Keith Gagne, Adrian Cort, Oguzhan Avci, Kevin Pollock, Pierre Hicks, Mina Rezk, Behsan Behzadi, Gautam Prabhakar
  • Patent number: 11965983
    Abstract: A light detection and ranging (LIDAR) apparatus is provided that includes an optical source to emit an optical beam towards a target and a mode field expander operatively coupled to the optical source to expand a mode area of the optical beam from a first mode of a single mode optical fiber to a second mode of a larger mode area optical fiber.
    Type: Grant
    Filed: May 27, 2022
    Date of Patent: April 23, 2024
    Assignee: Aeva, Inc.
    Inventors: Behsan Behzadi, Keith Gagne, Oguzhan Avci, Omer P. Kocaoglu, Neal N. Oza, Mina Rezk
  • Patent number: 11960032
    Abstract: A light detection and ranging (LIDAR) system includes an optical source to emit a corresponding plurality of optical beams with synchronized chirp rates and synchronized chirp durations. The plurality of optical beams are each tuned to produce regions of constructive and destructive interference into a combined optical beam. A first optical component forms a phase-locked loop to correct nonlinearities detected in the plurality of optical beams. A second optical component transmits a combined optical beam toward a target environment and receives a target return signal. A third optical component downconverts the target return signal to a plurality of fixed frequency downconverted target return signals, each including a target range component and a target velocity component.
    Type: Grant
    Filed: December 30, 2021
    Date of Patent: April 16, 2024
    Assignee: Aeva, Inc.
    Inventors: Behsan Behzadi, Neal N. Oza, Oguzhan Avci, Keith Gagne, Mina Rezk
  • Patent number: 11940571
    Abstract: A method of operating a light detection and ranging (LIDAR) system is provided that includes generating a beam of polarized light; and transforming a polarization state of the beam of polarized light at a rate faster than a rate of data collection at a plurality of detectors configured to detect light reflected from a target for the purpose of speckle-reduction.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: March 26, 2024
    Assignee: Aeva, Inc.
    Inventors: Neal N. Oza, Omer P. Kocaoglu, Behsan Behzadi, Oguzhan Avci, Keith Gagne, Mina Rezk
  • Patent number: 11927699
    Abstract: A light detection and ranging (LIDAR) system includes optical sources to emit a continuous-wave (CW) optical beam and a frequency-modulated CW (FMCW) optical beam, a first and second optical coupler to generate a CW local oscillator (LO), and an FMCW LO signal. The system further includes a first optical component to combine the CW optical beam and the FMCW optical beam, a second optical component to transmit the combined optical beam toward a target, a third optical component to split a target return signal into a CW return signal and a FMCW return signal based on polarization or frequency, a first optical detector to detect a first beat frequency from a combination of the CW LO signal and the CW return signal, and a second optical detector to detect a second beat frequency from a combination of the FMCW LO and the FMCW return signal.
    Type: Grant
    Filed: April 28, 2022
    Date of Patent: March 12, 2024
    Assignee: Aeva, Inc.
    Inventors: Oguzhan Avci, Omer P. Kocaoglu, Neal N. Oza, Keith Gagne, Behsan Behzadi, Mina Rezk
  • Publication number: 20240019553
    Abstract: A light detection and ranging (LIDAR) apparatus including free space optics to combine a target signal and a local oscillator signal to generate a combined signal. The LIDAR system also includes a set of multi-mode (MM) waveguides and a demultiplexer including a dispersive element. The demultiplexer configured to disperse, via the dispersive element, each respective wavelength of the combined signal at a corresponding angle, and reflect each respective wavelength of the combined signal to a corresponding MM waveguide of the set of MM waveguides.
    Type: Application
    Filed: August 3, 2023
    Publication date: January 18, 2024
    Inventors: Behsan Behzadi, Omer P. Kocaoglu, Keith Gagne, Oguzhan Avci, Neal N. Oza, Mina Rezk