Patents by Inventor Bei Zhu

Bei Zhu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10941033
    Abstract: A method includes fusion bonding a first side of a MEMS wafer to a second side of a first handle wafer. A TSV is formed from a first side of the first handle wafer to the second side of the first handle wafer and into the first MEMS wafer. A dielectric layer is formed on the first side of the first handle wafer. A tungsten via is formed in the dielectric layer. Electrodes are formed on the dielectric layer. A second MEMS wafer is eutecticly bonded with a first eutectic bond to the electrodes, wherein the TSV electrically connects the first MEMS wafer to the second MEMS wafer. Standoffs are formed on a second side of the first MEMS wafer. A CMOS wafer is eutecticly bonded with a second eutectic bond to the standoffs, wherein the second eutectic bond includes different materials than the first eutectic bond.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: March 9, 2021
    Assignee: InvenSense, Inc.
    Inventors: Dongyang Kang, Bongsang Kim, Bei Zhu, Ian Flader
  • Publication number: 20200131027
    Abstract: A method includes fusion bonding a first side of a MEMS wafer to a second side of a first handle wafer. A TSV is formed from a first side of the first handle wafer to the second side of the first handle wafer and into the first MEMS wafer. A dielectric layer is formed on the first side of the first handle wafer. A tungsten via is formed in the dielectric layer. Electrodes are formed on the dielectric layer. A second MEMS wafer is eutecticly bonded with a first eutectic bond to the electrodes, wherein the TSV electrically connects the first MEMS wafer to the second MEMS wafer. Standoffs are formed on a second side of the first MEMS wafer. A CMOS wafer is eutecticly bonded with a second eutectic bond to the standoffs, wherein the second eutectic bond includes different materials than the first eutectic bond.
    Type: Application
    Filed: August 14, 2019
    Publication date: April 30, 2020
    Inventors: Dongyang KANG, Bongsang KIM, Bei ZHU, Ian FLADER
  • Patent number: 8551831
    Abstract: An integrated circuit semiconductor device, e.g., MOS, CMOS. The device has a semiconductor substrate. The device also has a dielectric layer overlying the semiconductor substrate and a gate structure overlying the dielectric layer. A dielectric layer forms sidewall spacers on edges of the gate structure. A recessed region is within a portion of the gate structure within the sidewall spacer structures. An epitaxial fill material is within the recessed region. The device has a source recessed region and a drain recessed region within the semiconductor substrate and coupled to the gate structure. The device has an epitaxial fill material within the source recessed region and within the drain recessed region. A channel region is between the source region and the drain region is in a strain characteristic from at least the fill material formed in the source region and the drain region.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: October 8, 2013
    Assignees: Semiconductor Manufacturing International (Shanghai) Corporation, Semiconductor Manufacturing International (Beijing) Corporation
    Inventors: Da Wei Gao, Bei Zhu, Hanming Wu, John Chen, Paolo Bonfanti
  • Patent number: 8350253
    Abstract: An integrated circuit (“IC”) fabricated on a semiconductor substrate has an active gate structure formed over a channel region in the semiconductor substrate. A dummy gate structure is formed on a dielectric isolation structure. The dummy gate structure and the active gate structure have the same width. A sidewall spacer on the dummy gate structure overlies a semiconductor portion between a strain-inducing insert and the dielectric isolation structure.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: January 8, 2013
    Assignee: Xilinx, Inc.
    Inventors: Bei Zhu, Hong-Tze Pan, Bang-Thu Nguyen, Qi Lin, Zhiyuan Wu, Ping-Chin Yeh, Jae-Gyung Ahn, Yun Wu
  • Patent number: 8299564
    Abstract: Formation of transistors, such as, e.g., PMOS transistors, with diffusion regions having different depths for equalization of performance among transistors of an integrated circuit is described. Shallow-trench isolation structures are formed in a substrate formed at least in part of silicon for providing the transistors with at least substantially equivalent channel widths and lengths. A series of masks and etches is performed to form first recesses and second recesses defined in the silicon having different depths and respectively associated with first and second transistors. The second recesses are deeper than the first recesses. A silicon germanium film is formed in the first recesses and the second recesses. The silicon germanium film in the second recesses is thicker than the silicon germanium film in the first recesses, in order to increase performance of the second transistor so it is closer to the performance of the first transistor.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: October 30, 2012
    Assignee: Xilinx, Inc.
    Inventors: Yun Wu, Bei Zhu, Zhiyuan Wu, Michael J. Hart
  • Patent number: 8058120
    Abstract: A method for forming a semiconductor integrated circuit device, e.g., CMOS, includes providing a semiconductor substrate having a first well region and a second well region. The method further includes forming a dielectric layer overlying the semiconductor substrate, the first well region and the second well region, and forming a polysilicon gate layer (e.g., doped polysilicon) overlying the dielectric layer. The polysilicon gate layer is overlying a first channel region in the first well region and a second channel region in the second well region. The method includes forming a hard mask (e.g., silicon dioxide) overlying the polysilicon gate layer and patterning the polysilicon gate layer and the hard mask layer to form a first gate structure including first edges in the first well region and a second gate structure including second edges in the second well region. Next, the method separately forms strained regions in the first and second well regions.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: November 15, 2011
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: Xian Jie Ning, Bei Zhu
  • Publication number: 20110070701
    Abstract: A method for forming a semiconductor integrated circuit device, e.g., CMOS, includes providing a semiconductor substrate having a first well region and a second well region. The method further includes forming a dielectric layer overlying the semiconductor substrate, the first well region and the second well region, and forming a polysilicon gate layer (e.g., doped polysilicon) overlying the dielectric layer. The polysilicon gate layer is overlying a first channel region in the first well region and a second channel region in the second well region. The method includes forming a hard mask (e.g., silicon dioxide) overlying the polysilicon gate layer and patterning the polysilicon gate layer and the hard mask layer to form a first gate structure including first edges in the first well region and a second gate structure including second edges in the second well region. Next, the method separately forms strained regions in the first and second well regions.
    Type: Application
    Filed: July 28, 2010
    Publication date: March 24, 2011
    Applicant: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: Xian Jie Ning, Bei Zhu
  • Patent number: 7557000
    Abstract: A method for forming an strained silicon integrated circuit device. The method includes providing a semiconductor substrate and forming a dielectric layer overlying the semiconductor substrate. The method also includes forming a gate layer overlying the dielectric layer and forming a hard mask overlying the gate layer. The method patterns the gate layer to form a gate structure including edges using the hard mask as a protective layer. The method forms a dielectric layer overlying the gate structure to protect the gate structure including the edges. The method forms spacers from the dielectric layer, while maintaining the hard mask overlying the gate structure. The method etches a source region and a drain region adjacent to the gate structure using the dielectric layer and the hard mask as a protective layer, while the hard mask prevents any portion of the gate structure from being exposed. In a preferred embodiment, the method maintains the hard mask overlying the gate structure.
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: July 7, 2009
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: John Chen, Hanming Wu, Da Wei Gao, Bei Zhu, Paolo Bonfanti
  • Publication number: 20090152599
    Abstract: An integrated circuit semiconductor device, e.g., MOS, CMOS. The device has a semiconductor substrate. The device also has a dielectric layer overlying the semiconductor substrate and a gate structure overlying the dielectric layer. A dielectric layer forms sidewall spacers on edges of the gate structure. A recessed region is within a portion of the gate structure within the sidewall spacer structures. An epitaxial fill material is within the recessed region. The device has a source recessed region and a drain recessed region within the semiconductor substrate and coupled to the gate structure. The device has an epitaxial fill material within the source recessed region and within the drain recessed region. A channel region is between the source region and the drain region is in a strain characteristic from at least the fill material formed in the source region and the drain region.
    Type: Application
    Filed: September 19, 2008
    Publication date: June 18, 2009
    Applicant: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: Da Wei Gao, Bei Zhu, Hanming Wu, John Chen, Paolo Bonfanti
  • Publication number: 20080173941
    Abstract: A semiconductor integrated circuit device comprising a semiconductor substrate, e.g., silicon wafer, silicon on insulator. The device has a dielectric layer overlying the semiconductor substrate and a gate structure overlying the dielectric layer. The device also has a channel region within a portion of the semiconductor substrate within a vicinity of the gate structure and a lightly doped source/drain regions in the semiconductor substrate to from diffused pocket regions underlying portions of the gate structure. The device has sidewall spacers on edges of the gate structure. The device also has an etched source region and an etched drain region. Each of the first source region and the first drain region is characterized by a recessed region having substantially vertical walls, a bottom region, and rounded corner regions connecting the vertical walls to the bottom region.
    Type: Application
    Filed: February 24, 2007
    Publication date: July 24, 2008
    Applicant: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: Bei Zhu, Paolo Bonfanti, Hanming Wu, Da Wei Gao, John Chen
  • Publication number: 20080119032
    Abstract: A method for forming an strained silicon integrated circuit device. The method includes providing a semiconductor substrate and forming a dielectric layer overlying the semiconductor substrate. The method also includes forming a gate layer overlying the dielectric layer and forming a hard mask overlying the gate layer. The method patterns the gate layer to form a gate structure including edges using the hard mask as a protective layer. The method forms a dielectric layer overlying the gate structure to protect the gate structure including the edges. The method forms spacers from the dielectric layer, while maintaining the hard mask overlying the gate structure. The method etches a source region and a drain region adjacent to the gate structure using the dielectric layer and the hard mask as a protective layer, while the hard mask prevents any portion of the gate structure from being exposed. In a preferred embodiment, the method maintains the hard mask overlying the gate structure.
    Type: Application
    Filed: December 12, 2006
    Publication date: May 22, 2008
    Applicant: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: John Chen, Hanming Wu, Da Wei Gao, Bei Zhu, Paolo Bonfanti
  • Patent number: 7335566
    Abstract: A method of fabricating an integrated circuit including strained silicon bearing regions. The method forms a blanket layer of material having an initial thickness overlying a source region, a drain region, and a gate structure of an MOS device to cover an upper surface of the gate structure, including the hard mask layer, to form a substantially planarized surface region from the blanket layer. The method removes a portion of the initial thickness of the blanket layer to remove the hard mask and expose a portion of the gate structure. In a preferred embodiment, the portion of the gate structure is substantially polysilicon material. The method introduces dopant impurities into the portion of the gate structure using at least an implantation process to dope the gate structure, while maintaining the source region and the drain region free from the dopant impurities.
    Type: Grant
    Filed: October 10, 2006
    Date of Patent: February 26, 2008
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: Xian J. Ning, Bei Zhu
  • Publication number: 20070196992
    Abstract: A method for forming a semiconductor integrated circuit device, e.g., MOS, CMOS. The method includes providing a semiconductor substrate, e.g., silicon substrate, silicon on insulator. The method includes forming a dielectric layer (e.g., silicon dioxide, silicon nitride, silicon oxynitride) overlying the semiconductor substrate. The method also includes forming a gate layer (e.g., polysilicon) overlying the dielectric layer. The method patterns the gate layer to form a gate structure including edges. The method includes forming a dielectric layer overlying the gate structure to protect the gate structure including the edges. In a specific embodiment, sidewall spacers are formed using portions of the dielectric layer. The method etches a source region and a drain region adjacent to the gate structure using the dielectric layer as a protective layer.
    Type: Application
    Filed: May 26, 2006
    Publication date: August 23, 2007
    Applicant: Semiconductor Manufacturing Int'l (Shanghai) Corporation
    Inventors: Mo Hong Xiang, John Chen, Bei Zhu, Dai Gao, Hanming Wu
  • Publication number: 20070184668
    Abstract: A method of fabricating an integrated circuit including strained silicon bearing regions. The method forms a blanket layer of material having an initial thickness overlying a source region, a drain region, and a gate structure of an MOS device to cover an upper surface of the gate structure, including the hard mask layer, to form a substantially planarized surface region from the blanket layer. The method removes a portion of the initial thickness of the blanket layer to remove the hard mask and expose a portion of the gate structure. In a preferred embodiment, the portion of the gate structure is substantially polysilicon material. The method introduces dopant impurities into the portion of the gate structure using at least an implantation process to dope the gate structure, while maintaining the source region and the gate region free from the dopant impurities.
    Type: Application
    Filed: October 10, 2006
    Publication date: August 9, 2007
    Applicant: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: Xian Ning, Bei Zhu