Patents by Inventor Beihai Ma

Beihai Ma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150116894
    Abstract: A lead-lanthanum-zirconium-titanate (PLZT) capacitor on a substrate formed of glass. The first metallization layer is deposited on a top side of the substrate to form a first electrode. The dielectric layer of PLZT is deposited over the first metallization layer. The second metallization layer deposited over the dielectric layer to form a second electrode. The glass substrate is advantageous as glass is compatible with an annealing process used to form the capacitor.
    Type: Application
    Filed: October 29, 2013
    Publication date: April 30, 2015
    Inventors: M. RAY FAIRCHILD, RALPH S. TAYLOR, CARL W. BERLIN, CELINE WK WONG, BEIHAI MA, UTHAMALINGAM BALACHANDRAN
  • Patent number: 8974856
    Abstract: The present invention provides a method for fabricating a ceramic film on a copper foil. The method comprises applying a layer of a sol-gel composition onto a copper foil. The sol-gel composition comprises a precursor of a ceramic material suspended in 2-methoxyethanol. The layer of sol-gel is then dried at a temperature up to about 250° C. The dried layer is then pyrolyzed at a temperature in the range of about 300 to about 450° C. to form a ceramic film from the ceramic precursor. The ceramic film is then crystallized at a temperature in the range of about 600 to about 750° C. The drying, pyrolyzing and crystallizing are performed under a flowing stream of an inert gas. In some embodiments an additional layer of the sol-gel composition is applied onto the ceramic film and the drying, pyrolyzing and crystallizing steps are repeated for the additional layer to build up a thicker ceramic layer on the copper foil. The process can be repeated one or more times if desired.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: March 10, 2015
    Assignee: UChicago Argonne, LLC
    Inventors: Beihai Ma, Manoj Narayanan, Stephen E. Dorris, Uthamalingam Balachandran
  • Publication number: 20140120736
    Abstract: The invention provides a process for forming crack-free dielectric films on a substrate. The process comprises the application of a dielectric precursor layer of a thickness from about 0.3 ?m to about 1.0 ?m to a substrate. The deposition is followed by low temperature heat pretreatment, prepyrolysis, pyrolysis and crystallization step for each layer. The deposition, heat pretreatment, prepyrolysis, pyrolysis and crystallization are repeated until the dielectric film forms an overall thickness of from about 1.5 ?m to about 20.0 ?m and providing a final crystallization treatment to form a thick dielectric film. The process provides a thick crack-free dielectric film on a substrate, the dielectric forming a dense thick crack-free dielectric having an overall dielectric thickness of from about 1.5 ?m to about 20.0 ?m.
    Type: Application
    Filed: January 2, 2014
    Publication date: May 1, 2014
    Inventors: Beihai Ma, Manoj Narayanan, Uthamalingam Balachandran, Sheng Chao, Shanshan Lie
  • Patent number: 8647737
    Abstract: The invention provides a process for forming crack-free dielectric films on a substrate. The process comprise the application of a dielectric precursor layer of a thickness from about 0.3 ?m to about 1.0 ?m to a substrate. The deposition is followed by low temperature heat pretreatment, prepyrolysis, pyrolysis and crystallization step for each layer. The deposition, heat pretreatment, prepyrolysis, pyrolysis and crystallization are repeated until the dielectric film forms an overall thickness of from about 1.5 ?m to about 20.0 ?m and providing a final crystallization treatment to form a thick dielectric film. Also provided was a thick crack-free dielectric film on a substrate, the dielectric forming a dense thick crack-free dielectric having an overall dielectric thickness of from about 1.5 ?m to about 20.0 ?m.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: February 11, 2014
    Assignee: UChicago Argonne, LLC
    Inventors: Beihai Ma, Uthamalingam Balachandran, Sheng Chao, Shanshan Liu, Manoj Narayanan
  • Publication number: 20130335882
    Abstract: The invention is directed to a process for making a dielectric ceramic film capacitor and the ceramic dielectric laminated capacitor formed therefrom, the dielectric ceramic film capacitors having increased dielectric breakdown strength. The invention increases breakdown strength by embedding a conductive oxide layer between electrode layers within the dielectric layer of the capacitors. The conductive oxide layer redistributes and dissipates charge, thus mitigating charge concentration and micro fractures formed within the dielectric by electric fields.
    Type: Application
    Filed: June 14, 2012
    Publication date: December 19, 2013
    Applicant: UCHICAGO ARGONNE, LLC.
    Inventors: Beihai Ma, Uthamalingam Balachandran, Shanshan Liu
  • Publication number: 20130084444
    Abstract: The invention provides a process for forming crack-free dielectric films on a substrate. The process comprise the application of a dielectric precursor layer of a thickness from about 0.3 ?m to about 1.0 ?m to a substrate. The deposition is followed by low temperature heat pretreatment, prepyrolysis, pyrolysis and crystallization step for each layer. The deposition, heat pretreatment, prepyrolysis, pyrolysis and crystallization are repeated until the dielectric film forms an overall thickness of from about 1.5 ?m to about 20.0 ?m and providing a final crystallization treatment to form a thick dielectric film. Also provided was a thick crack-free dielectric film on a substrate, the dielectric forming a dense thick crack-free dielectric having an overall dielectric thickness of from about 1.5 ?m to about 20.0 ?m.
    Type: Application
    Filed: September 30, 2011
    Publication date: April 4, 2013
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Beihai Ma, Uthamalingam Balachandran, Sheng Chao, Shanshan Liu, Manoj Narayanan
  • Publication number: 20130071670
    Abstract: The invention provides for A method for producing pure phase strontium ruthenium oxide films, the method comprising solubilizing ruthenium-containing and strontium-containing compounds to create a mixture; subjecting the mixture to a first temperature above that necessary for forming RuO2 while simultaneously preventing formation of RuO2; maintaining the first temperature for a time to remove organic compounds from the mixture, thereby forming a substantially dry film; and subjecting the film to a second temperature for time sufficient to crystallize the film. Also provided is pure phase material comprising strontium ruthenium oxide wherein the material contains no RuO2.
    Type: Application
    Filed: September 20, 2011
    Publication date: March 21, 2013
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Manoj Narayanan, Beihai Ma, Uthamalingam Balachandran, Stephen Dorris
  • Publication number: 20120257324
    Abstract: The invention provides a stacked capacitor configuration comprising subunits each with a thickness of as low as 20 microns. Also provided is combination capacitor and printed wire board wherein the capacitor is encapsulated by the wire board. The invented capacitors are applicable in micro-electronic applications and high power applications, whether it is AC to DC or DC to AC, or DC to DC.
    Type: Application
    Filed: June 20, 2012
    Publication date: October 11, 2012
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Beihai Ma, Uthamalingam Balachandran
  • Publication number: 20100302706
    Abstract: The present invention provides a method for fabricating a ceramic film on a copper foil. The method comprises applying a layer of a sol-gel composition onto a copper foil. The sol-gel composition comprises a precursor of a ceramic material suspended in 2-methoxyethanol. The layer of sol-gel is then dried at a temperature up to about 250° C. The dried layer is then pyrolyzed at a temperature in the range of about 300 to about 450° C. to form a ceramic film from the ceramic precursor. The ceramic film is then crystallized at a temperature in the range of about 600 to about 750° C. The drying, pyrolyzing and crystallizing are performed under a flowing stream of an inert gas. In some embodiments an additional layer of the sol-gel composition is applied onto the ceramic film and the drying, pyrolyzing and crystallizing steps are repeated for the additional layer to build up a thicker ceramic layer on the copper foil. The process can be repeated one or more times if desired.
    Type: Application
    Filed: May 25, 2010
    Publication date: December 2, 2010
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Beihai MA, Manoj NARAYANAN, Stephen E. DORRIS, Uthamalingam BALACHANDRAN
  • Patent number: 7560291
    Abstract: A layered article of manufacture and a method of manufacturing same is disclosed. A substrate has a biaxially textured MgO crystalline layer having the c-axes thereof inclined with respect to the plane of the substrate deposited thereon. A layer of one or more of YSZ or Y2O3 and then a layer of CeO2 is deposited on the MgO. A crystalline superconductor layer with the c-axes thereof normal to the plane of the substrate is deposited on the CeO2 layer. Deposition of the MgO layer on the substrate is by the inclined substrate deposition method developed at Argonne National Laboratory. Preferably, the MgO has the c-axes thereof inclined with respect to the normal to the substrate in the range of from about 10° to about 40° and YBCO superconductors are used.
    Type: Grant
    Filed: January 11, 2006
    Date of Patent: July 14, 2009
    Assignee: UChicago Argonne, LLC
    Inventors: Uthamalingam Balachandran, Beihai Ma, Dean Miller
  • Publication number: 20070090342
    Abstract: A layered article of manufacture and a method of manufacturing same is disclosed. A substrate has a biaxially textured MgO crystalline layer having the c-axes thereof inclined with respect to the plane of the substrate deposited thereon. A layer of one or more of YSZ or Y2O3 and then a layer of CeO2 is deposited on the MgO. A crystalline superconductor layer with the c-axes thereof normal to the plane of the substrate is deposited on the CeO2 layer. Deposition of the MgO layer on the substrate is by the inclined substrate deposition method developed at Argonne National Laboratory. Preferably, the MgO has the c-axes thereof inclined with respect to the normal to the substrate in the range of from about 10° to about 40° and YBCO superconductors are used.
    Type: Application
    Filed: January 11, 2006
    Publication date: April 26, 2007
    Applicant: The University of Chicago
    Inventors: Uthamalingam Balachandran, Beihai Ma, Dean Miller
  • Patent number: 7012275
    Abstract: A layered article of manufacture and a method of manufacturing same is disclosed. A substrate has a biaxially textured MgO crystalline layer having the c-axes thereof inclined with respect to the plane of the substrate deposited thereon. A layer of one or more of YSZ or Y2O3 and then a layer of CeO2 is deposited on the MgO. A crystalline superconductor layer with the c-axes thereof normal to the plane of the substrate is deposited on the CeO2 layer. Deposition of the MgO layer on the substrate is by the inclined substrate deposition method developed at Argonne National Laboratory. Preferably, the MgO has the c-axes thereof inclined with respect to the normal to the substrate in the range of from about 10° to about 40° and YBCO superconductors are used.
    Type: Grant
    Filed: February 17, 2004
    Date of Patent: March 14, 2006
    Assignee: The University of Chicago
    Inventors: Uthamalingam Balachandran, Beihai Ma, Dean Miller
  • Publication number: 20050181953
    Abstract: A layered article of manufacture and a method of manufacturing same is disclosed. A substrate has a biaxially textured MgO crystalline layer having the c-axes thereof inclined with respect to the plane of the substrate deposited thereon. A layer of one or more of YSZ or Y2O3 and then a layer of CeO2 is deposited on the MgO. A crystalline superconductor layer with the c-axes thereof normal to the plane of the substrate is deposited on the CeO2 layer. Deposition of the MgO layer on the substrate is by the inclined substrate deposition method developed at Argonne National Laboratory. Preferably, the MgO has the c-axes thereof inclined with respect to the normal to the substrate in the range of from about 10° to about 40° and YBCO superconductors are used.
    Type: Application
    Filed: February 17, 2004
    Publication date: August 18, 2005
    Applicant: The University of Chicago
    Inventors: Uthamalingam Balachandran, Beihai Ma, Dean Miller
  • Publication number: 20050048329
    Abstract: A layered composition of a Cu-containing ceramic superconductor layer and a Ag-containing layer having between about 0.1 and about 0.3 atom percent Cu. The ceramic superconductor may be in contact with the Ag-containing copper doped layer which may be one or more of a substrate, a stabilizer or a sheath. Oxide superconductors are preferred.
    Type: Application
    Filed: August 26, 2003
    Publication date: March 3, 2005
    Applicant: The University of Chicago
    Inventors: Ruxandra Baurceanu, Thomas Wiencek, Stephen Dorris, Uthamalingam Balachandran, Beihai Ma
  • Patent number: 6579360
    Abstract: A method of forming a biaxially aligned superconductor on a non-biaxially aligned substrate substantially chemically inert to the biaxially aligned superconductor comprising is disclosed. A non-biaxially aligned substrate chemically inert to the superconductor is provided and a biaxially aligned superconductor material is deposited directly on the non-biaxially aligned substrate. A method forming a plume of superconductor material and contacting the plume and the non-biaxially aligned substrate at an angle greater than 0° and less than 90° to deposit a biaxially aligned superconductor on the non-biaxially aligned substrate is also disclosed. Various superconductors and substrates are illustrated.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: June 17, 2003
    Assignee: The University of Chicago
    Inventors: Uthamalingam Balachandran, Stephen E. Dorris, Beihai Ma, Meiya Li
  • Publication number: 20030013613
    Abstract: A method of forming a biaxially aligned superconductor on a non-biaxially aligned substrate substantially chemically inert to the biaxially aligned superconductor comprising is disclosed. A non-biaxially aligned substrate chemically inert to the superconductor is provided and a biaxially aligned superconductor material is deposited directly on the non-biaxially aligned substrate. A method forming a plume of superconductor material and contacting the plume and the non-biaxially aligned substrate at an angle greater than 0° and less than 90° to deposit a biaxially aligned superconductor on the non-biaxially aligned substrate is also disclosed. Various superconductors and substrates are illustrated.
    Type: Application
    Filed: July 13, 2001
    Publication date: January 16, 2003
    Inventors: Uthamalingam Balachandran, Stephen E. Dorris, Beihai Ma, Meiya Li