Patents by Inventor Belgacem Haba

Belgacem Haba has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10276909
    Abstract: A structure can include a first element and a carrier bonded to the first element along an interface. A waveguide can be defined at least in part along the interface between the first element and the carrier. The waveguide can comprise an effectively closed metallic channel and a dielectric material within the effectively closed metallic channel, as viewed from a side cross-section of the structure. Various millimeter-wave or sub-terahertz components or circuit structures can also be created based on the waveguide structures disclosed herein.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: April 30, 2019
    Assignee: Invensas Bonding Technologies, Inc.
    Inventors: Shaowu Huang, Javier A. DeLaCruz, Belgacem Haba
  • Publication number: 20190115323
    Abstract: Capacitive couplings in a direct-bonded interface for microelectronic devices are provided. In an implementation, a microelectronic device includes a first die and a second die direct-bonded together at a bonding interface, a conductive interconnect between the first die and the second die formed at the bonding interface by a metal-to-metal direct bond, and a capacitive interconnect between the first die and the second die formed at the bonding interface. A direct bonding process creates a direct bond between dielectric surfaces of two dies, a direct bond between respective conductive interconnects of the two dies, and a capacitive coupling between the two dies at the bonding interface. In an implementation, a capacitive coupling of each signal line at the bonding interface comprises a dielectric material forming a capacitor at the bonding interface for each signal line.
    Type: Application
    Filed: December 6, 2018
    Publication date: April 18, 2019
    Applicant: Invensas Corporation
    Inventors: Belgacem Haba, Arkalgud R. Sitaram
  • Patent number: 10262947
    Abstract: A structure including a first semiconductor chip with front and rear surfaces and a cavity in the rear surface. A second semiconductor chip is mounted within the cavity. The first chip may have vias extending from the cavity to the front surface and via conductors within these vias serving to connect an additional microelectronic element to the active elements of the first chip. The structure may have a volume comparable to that of the first chip alone and yet provide the functionality of a multi-chip assembly. A composite chip incorporating a body and a layer of semiconductor material mounted on a front surface of the body similarly may have a cavity extending into the body from the rear surface and may have an additional microelectronic element mounted in such cavity.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: April 16, 2019
    Assignee: Tessera, Inc.
    Inventors: Vage Oganesian, Ilyas Mohammed, Craig Mitchell, Belgacem Haba, Piyush Savalia
  • Publication number: 20190097362
    Abstract: Configurable smart object systems with standard connectors are provided. Example systems implement machine learning or neural networks that draw low power for use in appliances, smart phones, watches, drones, automobiles, and medical devices. Example assemblies have from pluggable, interchangeable modules that have compatible ports for interconnecting and integrating functionally dissimilar sensor systems. An example apparatus includes a pluggable module containing an artificial intelligence (AI) element and a standard connector, interface, plug, socket, or port. The AI element may be built into a plug or socket member of a connector, which may terminate at the connector. Or, the connector with AI may be a pass-through adapter that inserts AI inline in a system by plugging into an interface socket and extending an instance of the same socket that it plugged into. A magnetic attachment between the plug member and a corresponding socket member may secure the connection.
    Type: Application
    Filed: September 26, 2018
    Publication date: March 28, 2019
    Inventors: Belgacem HABA, Ilyas MOHAMMED, Gabriel Z. GUEVARA, Min TAO
  • Publication number: 20190069392
    Abstract: A stacked, multi-layer transmission line is provided. The stacked transmission line includes at least a pair of conductive traces, each conductive trace having a plurality of conductive stubs electrically coupled thereto. The stubs are disposed in one or more separate spatial layers from the conductive traces.
    Type: Application
    Filed: October 26, 2018
    Publication date: February 28, 2019
    Applicant: Invensas Corporation
    Inventors: Shaowu Huang, Javier A. Delacruz, Belgacem Haba
  • Patent number: 10211160
    Abstract: A microelectronic assembly can be made by forming a redistribution structure supported on a carrier, the structure including two or more layers of deposited dielectric material and two or more electrically conductive layers and including conductive features such as pads and traces electrically interconnected by vias. Electrical connectors may project above a second surface of the structure opposite an interconnection surface of the redistribution structure adjacent to the carrier. A microelectronic element may be attached and electrically connected with conductive features at the second surface, and a dielectric encapsulation can be formed contacting the second surface and surfaces of the microelectronic element. Electrically conductive features at the interconnection surface can be configured for connection with corresponding features of a first external component, and the electrical connectors can be configured for connection with corresponding features of a second external component.
    Type: Grant
    Filed: September 6, 2016
    Date of Patent: February 19, 2019
    Assignee: Invensas Corporation
    Inventors: Belgacem Haba, Wael Zohni, Cyprian Emeka Uzoh
  • Publication number: 20190036191
    Abstract: Flipped radio frequency (RF) and microwave filters and components for compact package assemblies are provided. An example RF filter is constructed by depositing a conductive trace, such as a redistribution layer, onto a flat surface of a substrate, to form an RF filter element. The substrate is vertically mounted on a motherboard, thereby saving dedicated area. Multiple layers of substrate can be laminated into a stack and mounted so that the RF filter elements of each layer are in vertical planes with respect to a horizontal motherboard, providing dramatic reduction in size. Deposited conductive traces of an example flipped RF filter stack can provide various stub configurations of an RF filter and emulate various distributed filter elements and their configuration geometries. The deposited conductive traces can also form other electronic components to be used in conjunction with the RF filter elements. A wirebond or bond via array (BVA™) version can provide flipped RF and microwave filters.
    Type: Application
    Filed: September 17, 2018
    Publication date: January 31, 2019
    Applicant: Invensas Corporation
    Inventors: Shaowu Huang, Belgacem Haba
  • Publication number: 20190035769
    Abstract: A microelectronic assembly (300) or system (1500) includes at least one microelectronic package (100) having a microelectronic element (130) mounted face up above a first surface (108) of a substrate (102), one or more columns (138, 140) of contacts (132) extending in a first direction (142) along the microelectronic element front face. Columns (104A, 105B, 107A, 107B) of terminals (105 107) exposed at a second surface (110) of the substrate extend in the first direction. First terminals (105) exposed at surface (110) in a central region (112) thereof having width (152) not more than three and one-half times a minimum pitch (150) of the columns of terminals can be configured to carry address information usable to determine an addressable memory location. An axial plane of the microelectronic element can intersect the central region.
    Type: Application
    Filed: October 1, 2018
    Publication date: January 31, 2019
    Applicant: Invensas Corporation
    Inventors: Richard Dewitt Crisp, Wael Zohni, Belgacem Haba, Frank Lambrecht
  • Publication number: 20190029132
    Abstract: Configurable smart object systems with methods of making modules and contactors are provided. Example systems implement machine learning based on neural networks that draw low power for use in smart phones, watches, drones, automobiles, and medical devices. Example assemblies can be configured from pluggable, interchangeable modules that have compatible ports for interconnecting and integrating functionally dissimilar sensor systems. An example method includes mounting an element of a configurable machine learning assembly on a substrate, creating at least one fold in the substrate, folding the substrate at the fold into a housing of a module of the configurable machine learning assembly, and adding a molding material to the housing to at least partially fill the module of the configurable machine learning assembly. The example module construction may also form contactors on folded edges of the module for making physical and electrical contact with other modules of the smart object machine learning assembly.
    Type: Application
    Filed: September 26, 2018
    Publication date: January 24, 2019
    Inventors: Belgacem HABA, Ilyas MOHAMMED, Gabriel Z. GUEVARA, Min TAO
  • Publication number: 20190019754
    Abstract: Embedded vialess bridges are provided. In an implementation, discrete pieces containing numerous conduction lines or wires in a 3-dimensional bridge piece are embedded where needed in a main substrate to provide dense arrays of signal, power, and electrical ground wires below the surface of the main substrate. Vertical conductive risers to reach the surface plane of the main substrate are also included in the discrete piece, for connecting to dies on the surface of the substrate and thereby interconnecting the dies to each other through the dense array of wires in the discrete piece. The discrete piece to be embedded may have parallel planes of conductors at regular intervals within itself, and thus may present a working surface homogeneously covered with the ends of vertical conductors available to connect surface components to each other and to ground and power at many places along the embedded piece.
    Type: Application
    Filed: September 20, 2018
    Publication date: January 17, 2019
    Applicant: Invensas Corporation
    Inventor: Belgacem Haba
  • Publication number: 20180366446
    Abstract: Capacitive coupling of integrated circuit die components and other conductive areas is provided. Each component to be coupled has a surface that includes at least one conductive area, such as a metal pad or plate. An ultrathin layer of dielectric is formed on at least one surface to be coupled. When the two components, e.g., one from each die, are permanently contacted together, the ultrathin layer of dielectric remains between the two surfaces, forming a capacitor or capacitive interface between the conductive areas of each respective component. The ultrathin layer of dielectric may be composed of multiple layers of various dielectrics, but in one implementation, the overall thickness is less than approximately 50 nanometers. The capacitance per unit area of the capacitive interface formed depends on the particular dielectric constants ? of the dielectric materials employed in the ultrathin layer and their respective thicknesses.
    Type: Application
    Filed: June 27, 2018
    Publication date: December 20, 2018
    Applicant: Invensas Corporation
    Inventors: Belgacem Haba, Arkalgud R. Sitaram
  • Patent number: 10157978
    Abstract: A component includes a substrate and a capacitor formed in contact with the substrate. The substrate can consist essentially of a material having a coefficient of thermal expansion of less than 10 ppm/° C. The substrate can have a surface and an opening extending downwardly therefrom. The capacitor can include at least first and second pairs of electrically conductive plates and first and second electrodes. The first and second pairs of plates can be connectable with respective first and second electric potentials. The first and second pairs of plates can extend along an inner surface of the opening, each of the plates being separated from at least one adjacent plate by a dielectric layer. The first and second electrodes can be exposed at the surface of the substrate and can be coupled to the respective first and second pairs of plates.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: December 18, 2018
    Assignee: Tessera, Inc.
    Inventors: Vage Oganesian, Belgacem Haba, Ilyas Mohammed, Piyush Savalia
  • Patent number: 10159148
    Abstract: Interposers and methods of making the same are disclosed herein. In one embodiment, an interposer includes a region having first and second oppositely facing surfaces and a plurality of pores, each pore extending in a first direction from the first surface towards the second surface, wherein alumina extends along a wall of each pore; a plurality of electrically conductive connection elements extending in the first direction, consisting essentially of aluminum and being electrically isolated from one another by at least the alumina; a first conductive path provided at the first surface for connection with a first component external to the interposer; and a second conductive path provided at the second surface for connection with a second component external to the interposer, wherein the first and second conductive paths are electrically connected through at least some of the connection elements.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: December 18, 2018
    Assignee: Invensas Corporation
    Inventors: Rajesh Katkar, Cyprian Emeka Uzoh, Belgacem Haba, Ilyas Mohammed
  • Publication number: 20180359855
    Abstract: Deformable electrical contacts with conformable target pads for microelectronic assemblies and other applications are provided. A plurality of deformable electrical contacts on a first substrate may be joined to a plurality of conformable pads on a second substrate during die level or wafer level assembly of microelectronics, for example. Each deformable contact deforms to a degree that is related to the amount of joining pressure between the first substrate and the second substrate. The deformation process also wipes each respective conformable pad with the deformable electrical contact to create a fresh metal-to-metal contact for good conduction. Each conformable pad collapses as pressured by a compressible material to assume the approximate deformed shape of the electrical contact, providing a large conduction surface area, while also compensating for horizontal misalignment.
    Type: Application
    Filed: May 16, 2018
    Publication date: December 13, 2018
    Applicant: Invensas Corporation
    Inventors: Belgacem Haba, Gabriel Z. Guevara
  • Publication number: 20180350766
    Abstract: Apparatuses relating to a microelectronic package are disclosed. In one such apparatus, a substrate has first contacts on an upper surface thereof. A microelectronic die has a lower surface facing the upper surface of the substrate and having second contacts on an upper surface of the microelectronic die. Wire bonds have bases joined to the first contacts and have edge surfaces between the bases and corresponding end surfaces. A first portion of the wire bonds are interconnected between a first portion of the first contacts and the second contacts. The end surfaces of a second portion of the wire bonds are above the upper surface of the microelectronic die. A dielectric layer is above the upper surface of the substrate and between the wire bonds. The second portion of the wire bonds have uppermost portions thereof bent over to be parallel with an upper surface of the dielectric layer.
    Type: Application
    Filed: August 8, 2018
    Publication date: December 6, 2018
    Applicant: Tessera, Inc.
    Inventors: Hiroaki SATO, Teck-Gyu KANG, Belgacem HABA, Philip R. OSBORN, Wei-Shun WANG, Ellis CHAU, Ilyas MOHAMMED, Norihito MASUDA, Kazuo SAKUMA, Kiyoaki HASHIMOTO, Kurasawa INETARO, Tomoyuki KIKUCHI
  • Patent number: 10149377
    Abstract: A stacked, multi-layer transmission line is provided. The stacked transmission line includes at least a pair of conductive traces, each conductive trace having a plurality of conductive stubs electrically coupled thereto. The stubs are disposed in one or more separate spatial layers from the conductive traces.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: December 4, 2018
    Assignee: Invensas Corporation
    Inventors: Shaowu Huang, Javier A. Delacruz, Belgacem Haba
  • Publication number: 20180331074
    Abstract: A microelectronic assembly can include a microelectronic package connected with a circuit panel. The package has a microelectronic element having a front face facing away from a substrate of the package, and electrically connected with the substrate through conductive structure extending above the front face. First terminals provided in first and second parallel grids or in first and second individual columns can be configured to carry address information usable to determine an addressable memory location from among all the available addressable memory locations of the memory storage array. The first terminals in the first grid can have signal assignments which are a mirror image of the signal assignments of the first terminals in the second grid.
    Type: Application
    Filed: July 17, 2018
    Publication date: November 15, 2018
    Applicant: Invensas Corporation
    Inventors: Richard Dewitt Crisp, Wael Zohni, Belgacem Haba, Frank Lambrecht
  • Patent number: 10128216
    Abstract: A microelectronic package has a microelectronic element overlying or mounted to a first surface of a substrate and substantially rigid conductive posts projecting above the first surface or projecting above a second surface of the substrate remote therefrom. Conductive elements exposed at a surface of the substrate opposite the surface above which the conductive posts project are electrically interconnected with the microelectronic element. An encapsulant overlies at least a portion of the microelectronic element and the surface of the substrate above which the conductive posts project, the encapsulant having a recess or a plurality of openings each permitting at least one electrical connection to be made to at least one conductive post. At least some conductive posts are electrically insulated from one another and adapted to simultaneously carry different electric potentials.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: November 13, 2018
    Assignee: Tessera, Inc.
    Inventor: Belgacem Haba
  • Publication number: 20180315735
    Abstract: Embedded organic interposers for high bandwidth are provided. Example embedded organic interposers provide thick conductors with more dielectric space, and more routing layers of such conductors than conventional interposers, in order to provide high bandwidth transmission capacity over longer spans. The embedded organic interposers provide high bandwidth transmission paths between components such as HBM, HBM2, and HBM3 memory stacks, and other components. To provide the thick conductors and more routing layers for greater transmission capacity, extra space is achieved by embedding the organic interposers in the core of the package. Example embedded organic interposers lower a resistive-capacitive (RC) load of the routing layers to provide improved signal transmission of 1-2 GHz up to 20-60 GHz bandwidth for each 15 mm length, for example. The embedded organic interposers are not limited to use with memory modules.
    Type: Application
    Filed: April 27, 2017
    Publication date: November 1, 2018
    Applicant: Invensas Corporation
    Inventors: Javier A. Delacruz, Belgacem Haba
  • Patent number: 10109903
    Abstract: Flipped radio frequency (RF) and microwave filters and components for compact package assemblies are provided. An example RF filter is constructed by depositing a conductive trace, such as a redistribution layer, onto a flat surface of a substrate, to form an RF filter element. The substrate is vertically mounted on a motherboard, thereby saving dedicated area. Multiple layers of substrate are laminated into a stack and mounted so that the RF filter elements of each layer are in vertical planes with respect to a horizontal motherboard, providing dramatic reduction in size. Deposited conductive traces of an example flipped RF filter stack provide various stub configurations of an RF filter and emulate various distributed filter elements and their configuration geometries. The deposited conductive traces also form other electronic components to be used in conjunction with the RF filter elements. A wirebond or bond via array (BVATM) version provides flipped RF and microwave filters.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: October 23, 2018
    Assignee: Invensas Corporation
    Inventors: Shaowu Huang, Belgacem Haba