Patents by Inventor Belgacem Haba

Belgacem Haba has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9615456
    Abstract: A structure may include bond elements having bases joined to conductive elements at a first portion of a first surface and end surfaces remote from the substrate. A dielectric encapsulation element may overlie and extend from the first portion and fill spaces between the bond elements to separate the bond elements from one another. The encapsulation element has a third surface facing away from the first surface. Unencapsulated portions of the bond elements are defined by at least portions of the end surfaces uncovered by the encapsulation element at the third surface. The encapsulation element at least partially defines a second portion of the first surface that is other than the first portion and has an area sized to accommodate an entire area of a microelectronic element. Some conductive elements are at the second portion and configured for connection with such microelectronic element.
    Type: Grant
    Filed: July 27, 2015
    Date of Patent: April 4, 2017
    Assignee: Invensas Corporation
    Inventors: Belgacem Haba, Ilyas Mohammed, Terrence Caskey, Reynaldo Co, Ellis Chau
  • Publication number: 20170092620
    Abstract: Capacitive coupling of integrated circuit die components and other conductive areas is provided. Each component to be coupled has a surface that includes at least one conductive area, such as a metal pad or plate. An ultrathin layer of dielectric is formed on at least one surface to be coupled. When the two components, e.g., one from each die, are permanently contacted together, the ultrathin layer of dielectric remains between the two surfaces, forming a capacitor or capacitive interface between the conductive areas of each respective component. The ultrathin layer of dielectric may be composed of multiple layers of various dielectrics, but in one implementation, the overall thickness is less than approximately 50 nanometers. The capacitance per unit area of the capacitive interface formed depends on the particular dielectric constants K of the dielectric materials employed in the ultrathin layer and their respective thicknesses.
    Type: Application
    Filed: August 25, 2016
    Publication date: March 30, 2017
    Applicant: Invensas Corporation
    Inventors: Belgacem Haba, Arkalgud R. Sitaram
  • Publication number: 20170084584
    Abstract: A microelectronic assembly can include a circuit panel having first and second panel contacts at respective first and second surfaces thereof, and first and second microelectronic packages each having terminals mounted to the respective panel contacts. Each package can include a microelectronic element having a face and contacts thereon, a substrate having first and second surfaces, and terminals on the second surface configured for connecting the package with an external component. The terminals can include first terminals at positions within first and second parallel grids. The first terminals can be configured to carry address information usable by circuitry within the package to determine an addressable memory location from among all the available addressable memory locations of a memory storage array within the microelectronic element. Signal assignments of the first terminals in the first grid can be a mirror image of signal assignments of the first terminals in the second grid.
    Type: Application
    Filed: December 1, 2016
    Publication date: March 23, 2017
    Inventors: Richard Dewitt Crisp, Wael Zohni, Belgacem Haba, Frank Lambrecht
  • Patent number: 9595511
    Abstract: A microelectronic unit includes microelectronic elements having memory storage arrays. First terminals and second terminals at a surface of the microelectronic unit are configured for connection with corresponding first and second sets of circuit panel contacts which are coupled with conductors of a common signaling bus on the circuit panel. Front surfaces of first and second microelectronic elements define a plurality of first planes at a substantial angle to a second plane defined by the major surface of the circuit panel. Each of a plurality of delay elements within the microelectronic unit is electrically coupled with a signaling path of the common signaling bus between one of the first terminals and a corresponding second terminal. In such way, the delay elements may reduce adverse effects of additive signal energy reflected from the microelectronic packages back towards the common signaling bus.
    Type: Grant
    Filed: May 12, 2016
    Date of Patent: March 14, 2017
    Assignee: Invensas Corporation
    Inventors: Belgacem Haba, Zhuowen Sun, Javier A. Delacruz
  • Publication number: 20170069595
    Abstract: 3D joining of microelectronic components and a conductively self-adjusting anisotropic matrix are provided. In an implementation, an adhesive matrix automatically makes electrical connections between two surfaces that have electrical contacts, and bonds the two surfaces together. Conductive members in the adhesive matrix are aligned to automatically establish electrical connections between at least partially aligned contacts on each of the two surfaces while providing nonconductive adhesion between parts of the two surfaces lacking aligned contacts. An example method includes forming an adhesive matrix between two surfaces to be joined, including conductive members anisotropically aligned in an adhesive medium, then pressing the two surfaces together to automatically connect corresponding electrical contacts that are at least partially aligned on the two surfaces. The adhesive medium in the matrix secures the two surfaces together.
    Type: Application
    Filed: September 6, 2016
    Publication date: March 9, 2017
    Applicant: Invensas Corporation
    Inventor: Belgacem Haba
  • Publication number: 20170069575
    Abstract: A microelectronic assembly can be made by forming a redistribution structure supported on a carrier, the structure including two or more layers of deposited dielectric material and two or more electrically conductive layers and including conductive features such as pads and traces electrically interconnected by vias. Electrical connectors may project above a second surface of the structure opposite an interconnection surface of the redistribution structure adjacent to the carrier. A microelectronic element may be attached and electrically connected with conductive features at the second surface, and a dielectric encapsulation can be formed contacting the second surface and surfaces of the microelectronic element. Electrically conductive features at the interconnection surface can be configured for connection with corresponding features of a first external component, and the electrical connectors can be configured for connection with corresponding features of a second external component.
    Type: Application
    Filed: September 6, 2016
    Publication date: March 9, 2017
    Inventors: Belgacem Haba, Wael Zohni, Cyprian Emeka Uzoh
  • Publication number: 20170062389
    Abstract: A microelectronic assembly can include a microelectronic package connected with a circuit panel. The package has a microelectronic element having a front face facing away from a substrate of the package, and electrically connected with the substrate through conductive structure extending above the front face. First terminals provided in first and second parallel grids or in first and second individual columns can be configured to carry address information usable to determine an addressable memory location from among all the available addressable memory locations of the memory storage array. The first terminals in the first grid can have signal assignments which are a mirror image of the signal assignments of the first terminals in the second grid.
    Type: Application
    Filed: November 10, 2016
    Publication date: March 2, 2017
    Inventors: Richard Dewitt Crisp, Wael Zohni, Belgacem Haba, Frank Lambrecht
  • Publication number: 20170053857
    Abstract: An interconnection component includes a first support portion has a plurality of first conductive vias extending therethrough substantially perpendicular to surfaces thereof such that each via has a first end adjacent a first surface and a second end adjacent a second surface. A second support portion has a plurality of second conductive vias extending therethrough substantially perpendicular to surfaces thereof such that each via has a first end adjacent the first surface and a second end adjacent the second surface. A redistribution layer is disposed between the second surfaces of the first and second support portions, electrically connecting at least some of the first vias with at least some of the second vias. The first and second support portions can have a coefficient of thermal expansion (“CTE”) of less than 12 parts per million per degree, Celsius (“ppm/° C.”).
    Type: Application
    Filed: July 25, 2016
    Publication date: February 23, 2017
    Inventors: Belgacem Haba, Kishor Desai
  • Patent number: 9570416
    Abstract: A plurality of microelectronic assemblies are made by severing an in-process unit including an upper substrate and lower substrate with microelectronic elements disposed between the substrates. In a further embodiment, a lead frame is joined to a substrate so that the leads project from this substrate. Lead frame is joined to a further substrate with one or more microelectronic elements disposed between the substrates.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: February 14, 2017
    Assignee: Tessera, Inc.
    Inventors: Belgacem Haba, Craig S. Mitchell, Masud Beroz
  • Patent number: 9570382
    Abstract: A microelectronic package has a microelectronic element overlying or mounted to a first surface of a substrate and substantially rigid conductive posts projecting above the first surface or projecting above a second surface of the substrate remote therefrom. Conductive elements exposed at a surface of the substrate opposite the surface above which the conductive posts project are electrically interconnected with the microelectronic element. An encapsulant overlies at least a portion of the microelectronic element and the surface of the substrate above which the conductive posts project, the encapsulant having a recess or a plurality of openings each permitting at least one electrical connection to be made to at least one conductive post. At least some conductive posts are electrically insulated from one another and adapted to simultaneously carry different electric potentials.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: February 14, 2017
    Assignee: Tessera, Inc.
    Inventor: Belgacem Haba
  • Patent number: 9559061
    Abstract: Wafer to carrier adhesion without mechanical adhesion for formation of an IC. In such formation, an apparatus has a bottom surface of a substrate abutting a top surface of a support platform without adhesive therebetween. A material is disposed around the substrate and on the top surface of the support platform. The material is in contact with a side surface of the substrate to completely seal an interface as between the bottom surface of the substrate and the top surface of the support platform to retain abutment of the top surface and the bottom surface.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: January 31, 2017
    Assignee: Invensas Corporation
    Inventors: Belgacem Haba, Ilyas Mohammed
  • Patent number: 9560773
    Abstract: An electrical connection structure includes a variable-composition nickel alloy layer with a minor constituent selected from a group consisting of boron, carbon, phosphorus, and tungsten, wherein at least over a portion of a conductive substrate, the concentration of the minor constituent decreases throughout the variable-composition nickel alloy layer in a direction from the bottom surface of the variable-composition nickel alloy layer to the top surface of the variable-composition nickel alloy layer.
    Type: Grant
    Filed: July 24, 2015
    Date of Patent: January 31, 2017
    Assignee: Tessera, Inc.
    Inventors: Cyprian Uzoh, Vage Oganesian, Ilyas Mohammed, Belgacem Haba, Piyush Savalia, Craig Mitchell
  • Publication number: 20170025390
    Abstract: A microelectronic structure includes a semiconductor having conductive elements at a first surface. Wire bonds have bases joined to the conductive elements and free ends remote from the bases, the free ends being remote from the substrate and the bases and including end surfaces. The wire bonds define edge surfaces between the bases and end surfaces thereof. A compliant material layer extends along the edge surfaces within first portions of the wire bonds at least adjacent the bases thereof and fills spaces between the first portions of the wire bonds such that the first portions of the wire bonds are separated from one another by the compliant material layer. Second portions of the wire bonds are defined by the end surfaces and portions of the edge surfaces adjacent the end surfaces that are extend from a third surface of the compliant later.
    Type: Application
    Filed: October 5, 2016
    Publication date: January 26, 2017
    Inventors: Belgacem Haba, Richard Dewitt Crisp, Wael Zohni
  • Patent number: 9553076
    Abstract: A microelectronic package having a substrate, a microelectronic element, e.g., a chip, and terminals can have conductive elements electrically connected with element contacts of the chip and contacts of the substrate. Conductive elements can be electrically insulated from one another for simultaneously carrying different electric potentials. An encapsulant can overlie the first surface of the substrate and at least a portion of a face of the microelectronic element remote from the substrate, and may have a major surface above the microelectronic element. A plurality of package contacts can overlie a face of the microelectronic element remote from the substrate. The package contacts, e.g., conductive masses, substantially rigid posts, can be electrically interconnected with terminals of the substrate, such as through the conductive elements. The package contacts can have top surfaces at least partially exposed at the major surface of the encapsulant.
    Type: Grant
    Filed: October 8, 2015
    Date of Patent: January 24, 2017
    Assignee: Tessera, Inc.
    Inventor: Belgacem Haba
  • Patent number: 9553071
    Abstract: A microelectronic package includes a first microelectronic element comprising logic circuitry which is flip-chip mounted to a substrate, the substrate having terminals for connection with a circuit panel or other external component. A second microelectronic element overlies a rear surface of the first microelectronic element and has contacts electrically coupled with the substrate through electrically conductive interconnects extending through a region of the first microelectronic element. A heat spreader is thermally coupled with the rear surface of the substrate, either directly or through an additional element overlying the rear surface. Additional contacts of the second microelectronic element may be coupled with contacts of the substrate through electrically conductive structure disposed beyond an edge surface of the first microelectronic element.
    Type: Grant
    Filed: January 11, 2016
    Date of Patent: January 24, 2017
    Assignee: Invensas Corporation
    Inventor: Belgacem Haba
  • Publication number: 20170018440
    Abstract: An interconnect element 130 can include a dielectric layer 116 having a top face 116b and a bottom face 116a remote from the top face, a first metal layer defining a plane extending along the bottom face and a second metal layer extending along the top face. One of the first or second metal layers, or both, can include a plurality of conductive traces 132, 134. A plurality of conductive protrusions 112 can extend upwardly from the plane defined by the first metal layer 102 through the dielectric layer 116. The conductive protrusions 112 can have top surfaces 126 at a first height 115 above the first metal layer 132 which may be more than 50% of a height of the dielectric layer. A plurality of conductive vias 128 can extend from the top surfaces 126 of the protrusions 112 to connect the protrusions 112 with the second metal layer.
    Type: Application
    Filed: September 30, 2016
    Publication date: January 19, 2017
    Inventors: Belgacem Haba, Vage Oganesian, Kimitaka Endo
  • Patent number: 9530458
    Abstract: A microelectronic structure has active elements defining a storage array, and address inputs for receipt of address information specifying locations within the storage array. The structure has a first surface and can have terminals exposed at the first surface. The terminals may include first terminals and the structure may be configured to transfer address information received at the first terminals to the address inputs. Each first terminal can have a signal assignment which includes one or more of the address inputs. The first terminals are disposed on first and second opposite sides of a theoretical plane normal to the first surface, wherein the signal assignments of the first terminals disposed on the first side are a mirror image of the signal assignments of the first terminals disposed on the second side of the theoretical plane.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: December 27, 2016
    Assignee: Invensas Corporation
    Inventors: Richard Dewitt Crisp, Wael Zohni, Belgacem Haba, Frank Lambrecht
  • Patent number: 9524947
    Abstract: A microelectronic interconnect element can include a plurality of first metal lines and a plurality of second metal lines interleaved with the first metal lines. Each of the first and second metal lines has a surface extending within the same reference plane. The first metal lines have surfaces above the reference plane and remote therefrom and the second metal lines have surfaces below the reference plane and remote therefrom. A dielectric layer can separate a metal line of the first metal lines from an adjacent metal line of the second metal lines.
    Type: Grant
    Filed: December 1, 2014
    Date of Patent: December 20, 2016
    Assignee: Invensas Corporation
    Inventors: Chang Myung Ryu, Kimitaka Endo, Belgacem Haba, Yoichi Kubota
  • Publication number: 20160365302
    Abstract: A method of making an assembly can include forming a circuit structure defining front and rear surfaces, and forming a substrate onto the rear surface. The forming of the circuit structure can include forming a first dielectric layer coupled to the carrier. The first dielectric layer can include front contacts configured for joining with contacts of one or more microelectronic elements, and first traces. The forming of the circuit structure can include forming rear conductive elements at the rear surface coupled with the front contacts through the first traces. The forming of the substrate can include forming a dielectric element directly on the rear surface. The dielectric element can have first conductive elements facing the rear conductive elements and joined thereto. The dielectric element can include second traces coupled with the first conductive elements. The forming of the substrate can include forming terminals at a surface of the substrate.
    Type: Application
    Filed: August 26, 2016
    Publication date: December 15, 2016
    Inventors: Liang Wang, Rajesh Katkar, Hong Shen, Cyprian Emeka Uzoh, Belgacem Haba
  • Patent number: 9515053
    Abstract: A microelectronic assembly can include a circuit panel having first and second panel contacts at respective first and second surfaces thereof, and first and second microelectronic packages each having terminals mounted to the respective panel contacts. Each package can include a microelectronic element having a face and contacts thereon, a substrate having first and second surfaces, and terminals on the second surface configured for connecting the package with an external component. The terminals can include first terminals at positions within first and second parallel grids. The first terminals can be configured to carry address information usable by circuitry within the package to determine an addressable memory location from among all the available addressable memory locations of a memory storage array within the microelectronic element. Signal assignments of the first terminals in the first grid can be a mirror image of signal assignments of the first terminals in the second grid.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: December 6, 2016
    Assignee: Invensas Corporation
    Inventors: Richard Dewitt Crisp, Wael Zohni, Belgacem Haba, Frank Lambrecht