Patents by Inventor Ben Baragiola

Ben Baragiola has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12254382
    Abstract: Applying Gottesman-Kitaev-Preskill (GKP) error correction to Gaussian input states, such as vacuum, produces distillable magic states, achieving universality without additional non-Gaussian elements. Gaussian operations are sufficient for fault-tolerant, universal quantum computing given a supply of GKP-encoded Pauli eigenstates.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: March 18, 2025
    Assignee: UNM RAINFOREST INNOVATIONS
    Inventors: Rafael Alexander, Nick Menicucci, Ben Baragiola, Giacomo Pantaleoni, Angela Karanjai
  • Publication number: 20230281499
    Abstract: A system for scalable, fault-tolerant photonic quantum computing includes multiple optical circuits, multiple photon number resolving detectors (PNRs), a multiplexer, and an integrated circuit (IC). During operation, the optical circuits generate output states via Gaussian Boson sampling (GBS), and the PNRs generate qubit clusters based on the output states. The multiplexer multiplexes the qubit clusters and replaces empty modes with squeezed vacuum states, to generate multiple hybrid resource states. The IC stitches together the hybrid resource states into a higher-dimensional cluster state that includes states for fault-tolerant quantum computation.
    Type: Application
    Filed: March 27, 2023
    Publication date: September 7, 2023
    Applicant: Xanadu Quantum Technologies Inc.
    Inventors: Joseph Eli BOURASSA, Ilan TZITRIN, Krishnakumar SABAPATHY, Guillaume DAUPHINAIS, Ish DHAND, Saikat GUHA, Nicolas MENICUCCI, Rafael ALEXANDER, Ben BARAGIOLA, Takaya MATSUURA, Blayney WALSHE
  • Patent number: 11341428
    Abstract: A system for scalable, fault-tolerant photonic quantum computing includes multiple optical circuits, multiple photon number resolving detectors (PNRs), a multiplexer, and an integrated circuit (IC). During operation, the optical circuits generate output states via Gaussian Boson sampling (GBS), and the PNRs generate qubit clusters based on the output states. The multiplexer multiplexes the qubit clusters and replaces empty modes with squeezed vacuum states, to generate multiple hybrid resource states. The IC stitches together the hybrid resource states into a higher-dimensional cluster state that includes states for fault-tolerant quantum computation.
    Type: Grant
    Filed: September 29, 2021
    Date of Patent: May 24, 2022
    Assignee: Xanadu Quantum Technologies Inc.
    Inventors: Joseph Eli Bourassa, Ilan Tzitrin, Krishnakumar Sabapathy, Guillaume Dauphinais, Ish Dhand, Saikat Guha, Nicolas Menicucci, Rafael Alexander, Ben Baragiola, Takaya Matsuura, Blayney Walshe
  • Publication number: 20220101168
    Abstract: A system for scalable, fault-tolerant photonic quantum computing includes multiple optical circuits, multiple photon number resolving detectors (PNRs), a multiplexer, and an integrated circuit (IC). During operation, the optical circuits generate output states via Gaussian Boson sampling (GBS), and the PNRs generate qubit clusters based on the output states. The multiplexer multiplexes the qubit clusters and replaces empty modes with squeezed vacuum states, to generate multiple hybrid resource states. The IC stitches together the hybrid resource states into a higher-dimensional cluster state that includes states for fault-tolerant quantum computation.
    Type: Application
    Filed: September 29, 2021
    Publication date: March 31, 2022
    Applicant: Xanadu Quantum Technologies Inc.
    Inventors: Eli Bourassa, Ilan Tzitrin, Krishnakumar Sabapathy, Guillaume Dauphinais, Ish Dhand, Saikat Guha, Nicolas Menicucci, Rafael Alexander, Ben Baragiola, Takaya Matsuura, Blayney Walshe
  • Publication number: 20220101173
    Abstract: Applying Gottesman-Kitaev-Preskill (GKP) error correction to Gaussian input states, such as vacuum, produces distillable magic states, achieving universality without additional non-Gaussian elements. Gaussian operations are sufficient for fault-tolerant, universal quantum computing given a supply of GKP-encoded Pauli eigenstates.
    Type: Application
    Filed: February 21, 2020
    Publication date: March 31, 2022
    Inventors: Rafael ALEXANDER, Nick MENICUCCI, Ben BARAGIOLA, Giacomo PANTALEONI, Angela KARANJAI