Patents by Inventor Ben Hitt
Ben Hitt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 7761239Abstract: A model of a particular biological state can be developed. The model may be used to determine if an unknown biological sample exhibits a particular biological state. This can be done by receiving either a biological sample or data associated with the biological sample. After the data is received, the data may be input into the model. In one embodiment, the acquisition of the data associated with the biological sample is performed at a first location and the imputing of the data into the model is performed at a second location different than the first location. Unless the data maps identically to the model, the data would have an inherent effect on the position of the particular clusters within the discriminatory pattern, if it is allowed to affect the model. The modeling software can keep track of the net effect on the model that each sample received has on the position of the model. If the model has drifted outside of a predetermined tolerance, the model can be updated.Type: GrantFiled: December 10, 2004Date of Patent: July 20, 2010Assignee: Correlogic Systems, Inc.Inventors: Tzong-Hao Chen, Ben A. Hitt, Peter J. Levine
-
Patent number: 7499891Abstract: The invention concerns heuristic algorithms for the classification of Objects. A first learning algorithm comprises a genetic algorithm that is used to abstract a data stream associated with each Object and a pattern recognition algorithm that is used to classify the Objects and measure the fitness of the chromosomes of the genetic algorithm. The learning algorithm is applied to a training data set. The learning algorithm generates a classifying algorithm, which is used to classify or categorize unknown Objects. The invention is useful in the areas of classifying texts and medical samples, predicting the behavior of one financial market based on price changes in others and in monitoring the state of complex process facilities to detect impending failures.Type: GrantFiled: April 13, 2007Date of Patent: March 3, 2009Assignee: Correlogic Systems, Inc.Inventor: Ben Hitt
-
Publication number: 20080195323Abstract: The invention relates to a method of quality assurance/quality control for high-throughput bioassay processes. The method permits monitoring of an entire system for obtaining spectral data from biological samples. Generally, the method includes generating a bioassay process model, comparing a test sample against the bioassay process model. The bioassay process model may be based on the position of a centroid in n-dimensional space. The comparing may include comparing the location of a centroid associated with the test model against the centroid associated with the control model to determine the distance between the two centroids. By generating a trend plot of the distance between the centroid associated with the test sample and the centroid associated with the control model, overall system performance may be monitored over time.Type: ApplicationFiled: January 2, 2008Publication date: August 14, 2008Inventors: Ben A. Hitt, Peter J. Levine, Timothy A. Coleman
-
Patent number: 7395160Abstract: The present invention relates to a method of quality assurance/quality control for high-throughput bioassay processes. The method includes generating a bioassay process model, and then comparing spectral data based on a combination of a biochip and a test serum to the bioassay process model to determine if the test sample and the bioassay process are producing acceptable data. Alternatively, the method may include comparing spectral data based on a combination of serum and diluents used in an electrospray process to the bioassay process model. If the bioassay process and test sample fall within the model, then the spectrum produced may be further analyzed.Type: GrantFiled: July 28, 2003Date of Patent: July 1, 2008Assignee: Correlogic Systems, Inc.Inventors: Ben A. Hitt, Peter J. Levine, Timothy A. Coleman
-
Publication number: 20080103063Abstract: The present invention relates to a method of quality assurance/quality control for high-throughput bioassay processes. The method includes generating a bioassay process model, and then comparing spectral data based on a combination of a biochip and a test serum to the bioassay process model to determine if the test sample and the bioassay process are producing acceptable data. Alternatively, the method may include comparing spectral data based on a combination of serum and diluents used in an electrospray process to the bioassay process model. If the bioassay process and test sample fall within the model, then the spectrum produced may be further analyzed.Type: ApplicationFiled: January 2, 2008Publication date: May 1, 2008Inventors: Ben Hitt, Peter Levine, Emanuel Petricoin
-
Patent number: 7333896Abstract: The present invention relates to a method of quality assurance/quality control for high-throughput bioassay processes. The method includes generating a bioassay process model, and then comparing spectral data based on a combination of a biochip and a test serum to the bioassay process model to determine if the test sample and the bioassay process are producing acceptable data. Alternatively, the method may include comparing spectral data based on a combination of serum and diluents used in an electrospray process to the bioassay process model. If the bioassay process and test sample fall within the model, then the spectrum produced may be further analyzed.Type: GrantFiled: July 28, 2003Date of Patent: February 19, 2008Assignees: Correlogic Systems, Inc., The United States of America as represented by the Department of Health and Human ServicesInventors: Ben A. Hitt, Peter J. Levine, Emanuel F. Petricoin, III
-
Patent number: 7333895Abstract: The invention relates to a method of quality assurance/quality control for high-throughput bioassay processes. The method permits monitoring of an entire system for obtaining spectral data from biological samples. Generally, the method includes generating a bioassay process model, comparing a test sample against the bioassay process model. The bioassay process model may be based on the position of a centroid in n-dimensional space. The comparing may include comparing the location of a centroid associated with the test model against the centroid associated with the control model to determine the distance between the two centroids. By generating a trend plot of the distance between the centroid associated with the test sample and the centroid associated with the control model, overall system performance may be monitored over time.Type: GrantFiled: July 28, 2003Date of Patent: February 19, 2008Assignee: Correlogic Systems, Inc.Inventors: Ben A. Hitt, Peter J. Levine, Timothy A. Coleman
-
Publication number: 20070185824Abstract: The invention concerns heuristic algorithms for the classification of Objects. A first learning algorithm comprises a genetic algorithm that is used to abstract a data stream associated with each Object and a pattern recognition algorithm that is used to classify the Objects and measure the fitness of the chromosomes of the genetic algorithm. The learning algorithm is applied to a training data set. The learning algorithm generates a classifying algorithm, which is used to classify or categorize unknown Objects. The invention is useful in the areas of classifying texts and medical samples, predicting the behavior of one financial market based on price changes in others and in monitoring the state of complex process facilities to detect impending failures.Type: ApplicationFiled: April 13, 2007Publication date: August 9, 2007Inventor: Ben Hitt
-
Patent number: 7240038Abstract: The invention concerns heuristic algorithms for the classification of Objects. A first learning algorithm comprises a genetic algorithm that is used to abstract a data stream associated with each Object and a pattern recognition algorithm that is used to classify the Objects and measure the fitness of the chromosomes of the genetic algorithm. The learning algorithm is applied to a training data set. The learning algorithm generates a classifying algorithm, which is used to classify or categorize unknown Objects. The invention is useful in the areas of classifying texts and medical samples, predicting the behavior of one financial market based on price changes in others and in monitoring the state of complex process facilities to detect impending failures.Type: GrantFiled: November 15, 2005Date of Patent: July 3, 2007Assignee: Correlogic Systems, Inc.Inventor: Ben Hitt
-
Publication number: 20070003996Abstract: Bacteria can be identified by analyzing a data stream that is obtained by processing a sample containing the bacteria, where the data stream has been abstracted to produce a sample vector that characterizes the data stream in a predetermined vector space containing at least one diagnostic cluster, the diagnostic cluster being associated with bacteria of known type, and by determining whether the sample vector rests with the diagnostic cluster, and if the sample rests within the diagnostic cluster, an indication that the bacteria are of the known type can be provided.Type: ApplicationFiled: February 9, 2006Publication date: January 4, 2007Inventors: Ben Hitt, Brian Mansfield, Ping Yip
-
Patent number: 7096206Abstract: The invention concerns heuristic algorithms for the classification of Objects. A first learning algorithm comprises a genetic algorithm that is used to abstract a data stream associated with each Object and a pattern recognition algorithm that is used to classify the Objects and measure the fitness of the chromosomes of the genetic algorithm. The learning algorithm is applied to a training data set. The learning algorithm generates a classifying algorithm, which is used to classify or categorize unknown Objects. The invention is useful in the areas of classifying texts and medical samples, predicting the behavior of one financial market based on price changes in others and in monitoring the state of complex process facilities to detect impending failures.Type: GrantFiled: June 19, 2001Date of Patent: August 22, 2006Assignee: Correlogic Systems, Inc.Inventor: Ben Hitt
-
Publication number: 20060112041Abstract: The invention concerns heuristic algorithms for the classification of Objects. A first learning algorithm comprises a genetic algorithm that is used to abstract a data stream associated with each Object and a pattern recognition algorithm that is used to classify the Objects and measure the fitness of the chromosomes of the genetic algorithm. The learning algorithm is applied to a training data set. The learning algorithm generates a classifying algorithm, which is used to classify or categorize unknown Objects. The invention is useful in the areas of classifying texts and medical samples, predicting the behavior of one financial market based on price changes in others and in monitoring the state of complex process facilities to detect impending failures.Type: ApplicationFiled: November 15, 2005Publication date: May 25, 2006Inventor: Ben Hitt
-
Publication number: 20060064253Abstract: A well-controlled serum study set (n=248) from women being followed and evaluated for the presence of ovarian cancer was used to extend serum proteomic pattern analysis to a higher resolution mass spectrometer instrument platform to explore the existence of multiple distinct highly accurate diagnostic sets of features present in the same mass spectrum. Multiple highly accurate diagnostic proteomic feature sets exist within human sera mass spectra. Using high-resolution mass spectral data, at least 56 different patterns were discovered that achieve greater than 85% sensitivity and specificity in testing and validation. Four of those feature sets exhibited 100% sensitivity and specificity in blinded validation. The sensitivity and specificity of diagnostic models generated from high-resolution mass spectral data were superior (P<0.00001) than those generated from low-resolution mass spectral data using the same input sample.Type: ApplicationFiled: March 30, 2005Publication date: March 23, 2006Inventors: Ben Hitt, Peter Levine
-
Publication number: 20050260671Abstract: The invention describes a process for determining a biological state through the discovery and analysis of hidden or non-obvious, discriminatory biological data patterns. The biological data can be from health data, clinical data, or from a biological sample, (e.g., a biological sample from a human, e.g., serum, blood, saliva, plasma, nipple aspirants, synovial fluids, cerebrospinal fluids, sweat, urine, fecal matter, tears, bronchial lavage, swabbings, needle aspirantas, semen, vaginal fluids, pre-ejaculate.), etc. which is analyzed to determine the biological state of the donor. The biological state can be a pathologic diagnosis, toxicity state, efficacy of a drug, prognosis of a disease, etc. Specifically, the invention concerns processes that discover hidden discriminatory biological data patterns (e.g., patterns of protein expression in a serum sample that classify the biological state of an organ) that describe biological states.Type: ApplicationFiled: July 27, 2005Publication date: November 24, 2005Inventors: Ben Hitt, Peter Levine, Emanuel Petricoin, Lance Liotta
-
Publication number: 20050209786Abstract: A model of a particular biological state can be developed. The model may be used to determine if an unknown biological sample exhibits a particular biological state. This can be done by receiving either a biological sample or data associated with the biological sample. After the data is received, the data may be input into the model. In one embodiment, the acquisition of the data associated with the biological sample is performed at a first location and the imputing of the data into the model is performed at a second location different than the first location. Unless the data maps identically to the model, the data would have an inherent effect on the position of the particular clusters within the discriminatory pattern, if it is allowed to affect the model. The modeling software can keep track of the net effect on the model that each sample received has on the position of the model. If the model has drifted outside of a predetermined tolerance, the model can be updated.Type: ApplicationFiled: December 10, 2004Publication date: September 22, 2005Inventors: Tzong-Hao Chen, Ben Hitt, Peter Levine
-
Patent number: 6925389Abstract: The invention describes a process for determining a biological state through the discovery and analysis of hidden or non-obvious, discriminatory biological data patterns. The biological data can be from health data, clinical data, or from a biological sample, (e.g., a biological sample from a human, e.g., serum, blood, saliva, plasma, nipple aspirants, synovial fluids, cerebrospinal fluids, sweat, urine, fecal matter, tears, bronchial lavage, swabbings, needle aspirantas, semen, vaginal fluids, pre-ejaculate.), etc. which is analyzed to determine the biological state of the donor. The biological state can be a pathologic diagnosis, toxicity state, efficacy of a drug, prognosis of a disease, etc. Specifically, the invention concerns processes that discover hidden discriminatory biological data patterns (e.g., patterns of protein expression in a serum sample that classify the biological state of an organ) that describe biological states.Type: GrantFiled: July 18, 2001Date of Patent: August 2, 2005Assignees: Correlogic Systems, Inc.,, The United States of America as Represented by the Department of Health and Human ServicesInventors: Ben A. Hitt, Emanuel F. Petricoin, III, Peter J. Levine, Lance A. Liotta
-
Publication number: 20050043593Abstract: The invention describes a process for determining a biological state through the discovery and analysis of hidden or non-obvious, discriminatory biological data patterns. The biological data can be from health data, clinical data, or from a biological sample, (e.g., a biological sample from a human, e.g., serum, blood, saliva, plasma, nipple aspirants, synovial fluids, cerebrospinal fluids, sweat, urine, fecal matter, tears, bronchial lavage, swabbings, needle aspirantas, semen, vaginal fluids, pre-ejaculate.), etc. which is analyzed to determine the biological state of the donor. The biological state can be a pathologic diagnosis, toxicity state, efficacy of a drug, prognosis of a disease, etc. Specifically, the invention concerns processes that discover hidden discriminatory biological data patterns (e.g., patterns of protein expression in a serum sample that classify the biological state of an organ) that describe biological states.Type: ApplicationFiled: July 18, 2001Publication date: February 24, 2005Inventors: Ben Hitt, Emanuel Petricoin III, Peter Levine, Lance Liotta
-
Publication number: 20040058388Abstract: The present invention relates to a method of quality assurance/quality control for high-throughput bioassay processes. The method includes generating a bioassay process model, and then comparing spectral data based on a combination of a biochip and a test serum to the bioassay process model to determine if the test sample and the bioassay process are producing acceptable data. Alternatively, the method may include comparing spectral data based on a combination of serum and diluents used in an electrospray process to the bioassay process model. If the bioassay process and test sample fall within the model, then the spectrum produced may be further analyzed.Type: ApplicationFiled: July 28, 2003Publication date: March 25, 2004Inventors: Ben A. Hitt, Peter J. Levine, Emmanuel F. Petricoin
-
Publication number: 20040058372Abstract: The invention relates to a method of quality assurance/quality control for high-throughput bioassay processes. The method permits monitoring of an entire system for obtaining spectral data from biological samples. Generally, the method includes generating a bioassay process model, comparing a test sample against the bioassay process model. The bioassay process model may be based on the position of a centroid in n-dimensional space. The comparing may include comparing the location of a centroid associated with the test model against the centroid associated with the control model to determine the distance between the two centroids. By generating a trend plot of the distance between the centroid associated with the test sample and the centroid associated with the control model, overall system performance may be monitored over time.Type: ApplicationFiled: July 28, 2003Publication date: March 25, 2004Inventors: Ben A. Hitt, Peter J. Levine, Timothy A. Coleman
-
Publication number: 20040053333Abstract: The present invention relates to a method of quality assurance/quality control for high-throughput bioassay processes. The method includes generating a bioassay process model, and then comparing spectral data based on a combination of a biochip and a test serum to the bioassay process model to determine if the test sample and the bioassay process are producing acceptable data. Alternatively, the method may include comparing spectral data based on a combination of serum and diluents used in an electrospray process to the bioassay process model. If the bioassay process and test sample fall within the model, then the spectrum produced may be further analyzed.Type: ApplicationFiled: July 28, 2003Publication date: March 18, 2004Inventors: Ben A. Hitt, Peter J. Levine, Timothy A. Coleman