Patents by Inventor Ben P. Hu

Ben P. Hu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11378132
    Abstract: A torque tube assembly includes a torque tube, and a fitting attached to the torque tube by a first EMF joint and by a second EMF joint. The first EMF joint comprises a first plurality of torque lands formed proximate a first end of the torque tube and a first plurality of fitting lands formed proximate a first end of the fitting. The second EMF joint comprises a second plurality of torque lands formed distal to the first end of the torque tube and a second plurality of fitting lands formed distal to the first end of the fitting.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: July 5, 2022
    Assignee: THE BOEING COMPANY
    Inventors: Mark R. Meyer, Ben P. Hu
  • Publication number: 20210044196
    Abstract: A torque tube assembly includes a torque tube, and a fitting attached to the torque tube by a first EMF joint and by a second EMF joint. The first EMF joint comprises a first plurality of torque lands formed proximate a first end of the torque tube and a first plurality of fitting lands formed proximate a first end of the fitting. The second EMF joint comprises a second plurality of torque lands formed distal to the first end of the torque tube and a second plurality of fitting lands formed distal to the first end of the fitting.
    Type: Application
    Filed: August 7, 2019
    Publication date: February 11, 2021
    Inventors: Mark R. Meyer, Ben P. Hu
  • Patent number: 7915516
    Abstract: In one embodiment, an operating condition of a thermoelectric module is monitored. It is determined when the monitored operating condition exceeds a desired range. Upon determining the monitored operating condition exceeds the desired range, a thermal adjustment is applied to the thermal condition to direct the operating condition to within the desired range. The monitoring the operating condition may include measuring an operating temperature of an environment adjacent a surface of the thermoelectric module, a surface temperature of a portion of the thermoelectric module, a thermal differential between the first surface and the second surface of the thermoelectric module, and an output voltage of the thermoelectric module. The desired range includes a temperature range below a level at which the thermoelectric module will sustain thermal damage and a thermal differential capable of causing the thermoelectric module to generate a minimum desired output voltage.
    Type: Grant
    Filed: May 10, 2006
    Date of Patent: March 29, 2011
    Assignee: The Boeing Company
    Inventor: Ben P Hu
  • Patent number: 7544915
    Abstract: Aircraft galley carts and methods for their manufacture are disclosed herein. In one embodiment, a galley cart for use on an aircraft includes a body configured to be moved along a passenger aisle of the aircraft. The body can include a one-piece plastic shell forming a first side portion and at least one of a second side portion, a top portion, and a bottom portion of the body. In one aspect of this embodiment, at least a portion of the one-piece plastic shell can include an inner skin offset from an outer skin in a double-wall configuration.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: June 9, 2009
    Assignee: The Boeing Company
    Inventor: Ben P. Hu
  • Patent number: 7458441
    Abstract: Latches and associated devices, including galley carts, are disclosed. An aircraft galley cart in accordance with an embodiment of the invention can include a body having a payload compartment and sized to move along an aircraft seat aisle. A door can be attached to the body to be movable between an open position and a closed position. A latch can be coupled to at least one of the door and the body, and at least a portion of the latch can be movable between a secured position and an unsecured position. When the latch is in the secured position, the door can be secured with the latch releasably coupling the door and the body together at fewer than three locations. When the latch is in the unsecured position, the door can be movable from the closed position to the open position.
    Type: Grant
    Filed: July 22, 2004
    Date of Patent: December 2, 2008
    Assignee: The Boeing Company
    Inventor: Ben P. Hu
  • Patent number: 7093458
    Abstract: A system and method are provided for refrigerating at least one enclosure, such as an aircraft galley cart. The system includes at least one air-to-liquid heat exchanger, an eutectic thermal battery, a liquid-to-direct heat exchanger and at least one liquid-to-direct heat pump. The air-to-liquid heat exchangers are in thermal communication with the interiors of the enclosures. The thermal battery is in fluid communication with the air-to-liquid heat exchangers via a first coolant loop. The liquid-to-direct heat exchanger and the liquid-to-direct heat pumps are in fluid communication with the eutectic thermal battery via a second coolant loop, and in thermal communication with a cold heat sink, such as an aircraft fuselage skin structure. The system can controllably operate in direct passive, indirect passive, direct active and/or an indirect active modes whereby a coolant can selectively flow in the first and/or second coolant loops to thereby refrigerate the enclosures.
    Type: Grant
    Filed: February 19, 2003
    Date of Patent: August 22, 2006
    Assignee: The Boeing Company
    Inventor: Ben P. Hu
  • Patent number: 7089756
    Abstract: A system and method are provided for refrigerating at least one enclosure, such as an aircraft galley cart. The system includes at least one air-to-liquid heat exchanger, an eutectic thermal battery, a liquid-to-direct heat exchanger and at least one liquid-to-direct heat pump. The air-to-liquid heat exchangers are in thermal communication with the interiors of the enclosures. The thermal battery is in fluid communication with the air-to-liquid heat exchangers via a first coolant loop. The liquid-to-direct heat exchanger and the liquid-to-direct heat pumps are in fluid communication with the eutectic thermal battery via a second coolant loop, and in thermal communication with a cold heat sink, such as an aircraft fuselage skin structure. The system can controllably operate in direct passive, indirect passive, direct active and/or an indirect active modes whereby a coolant can selectively flow in the first and/or second coolant loops to thereby refrigerate the enclosures.
    Type: Grant
    Filed: August 26, 2003
    Date of Patent: August 15, 2006
    Assignee: The Boeing Company
    Inventor: Ben P. Hu
  • Patent number: 7007501
    Abstract: A system, apparatus, and method are provided for selectively actively and passively refrigerating one or more enclosures. The apparatus includes a primary heat sink that defines at least one surface configured to receive thermal energy from a gas in the enclosure so that the enclosure is refrigerated. First and second coolant heat sinks thermally communicate with the primary heat sink to remove thermal energy therefrom. For example, in a passive mode, a coolant is circulated through the first heat sink to cool the primary heat sink. In an active mode, the coolant is circulated through the second coolant heat sink and at least one heat pump is operated to transfer thermal energy from the primary heat sink to the coolant in the second coolant heat sink.
    Type: Grant
    Filed: August 15, 2003
    Date of Patent: March 7, 2006
    Assignee: The Boeing Company
    Inventor: Ben P. Hu
  • Publication number: 20040159118
    Abstract: A system and method are provided for refrigerating at least one enclosure, such as an aircraft galley cart. The system includes at least one air-to-liquid heat exchanger, an eutectic thermal battery, a liquid-to-direct heat exchanger and at least one liquid-to-direct heat pump. The air-to-liquid heat exchangers are in thermal communication with the interiors of the enclosures. The thermal battery is in fluid communication with the air-to-liquid heat exchangers via a first coolant loop. The liquid-to-direct heat exchanger and the liquid-to-direct heat pumps are in fluid communication with the eutectic thermal battery via a second coolant loop, and in thermal communication with a cold heat sink, such as an aircraft fuselage skin structure. The system can controllably operate in direct passive, indirect passive, direct active and/or an indirect active modes whereby a coolant can selectively flow in the first and/or second coolant loops to thereby refrigerate the enclosures.
    Type: Application
    Filed: August 26, 2003
    Publication date: August 19, 2004
    Applicant: The Boeing Company
    Inventor: Ben P. Hu
  • Publication number: 20040159119
    Abstract: A system and method are provided for refrigerating at least one enclosure, such as an aircraft galley cart. The system includes at least one air-to-liquid heat exchanger, an eutectic thermal battery, a liquid-to-direct heat exchanger and at least one liquid-to-direct heat pump. The air-to-liquid heat exchangers are in thermal communication with the interiors of the enclosures. The thermal battery is in fluid communication with the air-to-liquid heat exchangers via a first coolant loop. The liquid-to-direct heat exchanger and the liquid-to-direct heat pumps are in fluid communication with the eutectic thermal battery via a second coolant loop, and in thermal communication with a cold heat sink, such as an aircraft fuselage skin structure. The system can controllably operate in direct passive, indirect passive, direct active and/or an indirect active modes whereby a coolant can selectively flow in the first and/or second coolant loops to thereby refrigerate the enclosures.
    Type: Application
    Filed: February 19, 2003
    Publication date: August 19, 2004
    Applicant: The Boeing Company
    Inventor: Ben P. Hu