Patents by Inventor Ben Turng

Ben Turng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11840719
    Abstract: An apparatus and associated methods of use for a controlled combination of reagents is disclosed. The apparatus includes a vessel 400, a vessel insert 220, and a cap element 200. The vessel 400 has a body portion 410 for receiving a biological sample. The vessel insert 220 receives at least one reagent therein. Preferably, the vessel insert 220 is received in a portion 420 of the vessel 400. The cap element 200 is attached to the vessel 400 to secure the vessel insert 220 in the vessel 400. During use, the vessel insert 220 is adapted to release its contents when the biological sample is introduced into the body portion 410 of the vessel 400 upon application of an intermixing force to the vessel insert 220. A variety of intermixing forces may be applied, depending upon the embodiment of the present invention and its associated methods of use.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: December 12, 2023
    Assignee: BECTON, DICKINSON AND COMPANY
    Inventors: Mei Yang-Woytowitz, Brent Pohl, Gary F. Hershner, Dwight Livingston, Eric Ursprung, Gerard Lotz, Kevin Bailey, Ammon David Lentz, Michael A. Brasch, Ming-hsiung Yeh, Patrick Shawn Beaty, Charles C. Yu, Timothy M. Wiles, Liping Feng, Ben Turng, Xiaofei Chang, Patrick R. Murray
  • Patent number: 11371072
    Abstract: An automated system for identifying in a biological sample microorganisms and their antimicrobial susceptibility (AST). The system provided an automated platform for preparing, from a single biological sample, inoculates for both ID and AST. The system loads a plate for ID testing as samples are being prepared for AST testing. The system tracks the sample and the inoculates from the samples to link the test results to the sample and the patients from whom the sample was obtained.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: June 28, 2022
    Assignee: BECTON DICKINSON AND COMPANY
    Inventors: Robert Edward Armstrong, John Thulin Page, Ben Turng, Glen Richard Davis, Strett Roger Nicolson, Timothy Hansen
  • Patent number: 11225681
    Abstract: Various embodiments disclosed herein provide for reagents and methods for rapidly isolating viable microbial cells, including S. pneumoniae, from positive blood culture samples. The resulting microbial pellet can be used for both identification and growth-based methods such as antimicrobial susceptibility testing. The buffers described herein may contain a base solution, non-ionic detergents, thiols, and optionally, ammonium chloride. The disclosed methods provide a process for rapidly isolating and concentrating viable microorganism(s) from PBC samples using only one sample preparation tube and centrifugation while removing cellular debris from the mammalian blood cells that may interfere with identification methods.
    Type: Grant
    Filed: November 7, 2019
    Date of Patent: January 18, 2022
    Assignee: BECTON, DICKINSON AND COMPANY
    Inventors: Susan M. Kircher, Vanda White, William B. Brasso, Dyan Luper, James Y. Zhou, Julie L. Rosales, Jeffery H. Bruton, John D. Mantlo, Adrien P. Malick, Donald R. Callihan, Ben Turng, Liping Feng, Curtis M. Gosnell, Patrick Shawn Beaty, John P. Douglass
  • Publication number: 20200340029
    Abstract: An apparatus and associated methods of use for a controlled combination of reagents is disclosed. The apparatus includes a vessel 400, a vessel insert 220, and a cap element 200. The vessel 400 has a body portion 410 for receiving a biological sample. The vessel insert 220 receives at least one reagent therein. Preferably, the vessel insert 220 is received in a portion 420 of the vessel 400. The cap element 200 is attached to the vessel 400 to secure the vessel insert 220 in the vessel 400. During use, the vessel insert 220 is adapted to release its contents when the biological sample is introduced into the body portion 410 of the vessel 400 upon application of an intermixing force to the vessel insert 220. A variety of intermixing forces may be applied, depending upon the embodiment of the present invention and its associated methods of use.
    Type: Application
    Filed: July 13, 2020
    Publication date: October 29, 2020
    Inventors: Mei Yang-Woytowitz, Brent Pohl, Gary F. Hershner, Dwight Livingston, Eric Ursprung, Gerard Lotz, Kevin Bailey, Ammon David Lentz, Michael A. Brasch, Ming-hsiung Yeh, Patrick Shawn Beaty, Charles C. Yu, Timothy M. Wiles, Liping Feng, Ben Turng, Xiaofei Chang, Patrick R. Murray
  • Patent number: 10767146
    Abstract: An apparatus and associated methods of use for a controlled combination of reagents is disclosed. The apparatus includes a vessel 400, a vessel insert 220, and a cap element 200. The vessel 400 has a body portion 410 for receiving a biological sample. The vessel insert 220 receives at least one reagent therein. Preferably, the vessel insert 220 is received in a portion 420 of the vessel 400. The cap element 200 is attached to the vessel 400 to secure the vessel insert 220 in the vessel 400. During use, the vessel insert 220 is adapted to release its contents when the biological sample is introduced into the body portion 410 of the vessel 400 upon application of an intermixing force to the vessel insert 220. A variety of intermixing forces may be applied, depending upon the embodiment of the present invention and its associated methods of use.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: September 8, 2020
    Assignee: BECTON, DICKINSON AND COMPANY
    Inventors: Mei Yang-Woytowitz, Brent Pohl, Gary F. Hershner, Eric Ursprung, Michael A. Brasch, Ming-hsiung Yeh, Patrick Shawn Beaty, Charles C. Yu, Timothy M. Wiles, Liping Feng, Ben Turng, Xiaofei Chang, Patrick R. Murray
  • Patent number: 10669566
    Abstract: A system for automated microorganism identification and antibiotic susceptibility testing comprising a reagent cartridge, a reagent stage, a cassette, a cassette, stage, a pipettor assembly, an optical detection system, and a controller is disclosed. The system is designed to dynamically adjust motor idle torque to control heat load and employs a fast focus process for determining the true focus position of an individual microorganism. The system also may quantify the relative abundance of viable microorganisms in a sample using dynamic dilution, and facilitate growth of microorganisms in customized media for rapid, accurate antimicrobial susceptibility testing.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: June 2, 2020
    Assignee: Accelerate Giagnostics, Inc.
    Inventors: William L. Richards, Austin Ashby, Matthew Ketterer, Kevin Marshall, Josh Harrison, Matthew Mette, Paul Richards, Wayne Showalter, Jasmin Cote, Steven W. Metzger, Ken Hance, Meghan Mensack, Carlos Michel, Elke Allers, Dulini Gamage, Landon Prisbrey, Oleg Gusyatin, Alena Shamsheyeva, Ben Turng, Andrew Ghusson, Kurt Reinhardt, Phillip C. Halbert, Solene Bourgeois
  • Publication number: 20200087702
    Abstract: Various embodiments disclosed herein provide for reagents and methods for rapidly isolating viable microbial cells, including S. pneumoniae, from positive blood culture samples. The resulting microbial pellet can be used for both identification and growth-based methods such as antimicrobial susceptibility testing. The buffers described herein may contain a base solution, non-ionic detergents, thiols, and optionally, ammonium chloride. The disclosed methods provide a process for rapidly isolating and concentrating viable microorganism(s) from PBC samples using only one sample preparation tube and centrifugation while removing cellular debris from the mammalian blood cells that may interfere with identification methods.
    Type: Application
    Filed: November 7, 2019
    Publication date: March 19, 2020
    Applicant: BECTON DICKINSON AND COMPANY
    Inventors: Susan M. Kircher, Vanda White, William B. Brasso, Dyan Luper, James Y. Zhou, Julie L. Rosales, Jeffery H. Bruton, John D. Mantlo, Adrien P. Malick, Donald R. Callihan, Ben Turng, Liping Feng, Curtis M. Gosnell, Patrick Shawn Beaty, John P. Douglass
  • Patent number: 10519482
    Abstract: Various embodiments disclosed herein provide for reagents and methods for rapidly isolating viable microbial cells, including S. pneumoniae, from positive blood culture samples. The resulting microbial pellet can be used for both identification and growth-based methods such as antimicrobial susceptibility testing. The buffers described herein may contain a base solution, non-ionic detergents, thiols, and optionally, ammonium chloride. The disclosed methods provide a process for rapidly isolating and concentrating viable microorganism (s) from PBC samples using only one sample preparation tube and centrifugation while removing cellular debris from the mammalian blood cells that may interfere with identification methods.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: December 31, 2019
    Assignee: Becton, Dickinson And Company
    Inventors: Susan M. Kircher, Vanda White, William B. Brasso, Dyan Luper, James Y. Zhou, Julie L. Rosales, Jeffery H. Bruton, John D. Mantlo, Adrien P. Malick, Donald R. Callihan, Ben Turng, Liping Feng, Curtis M. Gosnell, Patrick Shawn Beaty, John P. Douglass
  • Publication number: 20190233873
    Abstract: An automated system for identifying in a biological sample microorganisms and their antimicrobial susceptibility (AST). The system provided an automated platform for preparing, from a single biological sample, inoculates for both ID and AST. The system loads a plate for ID testing as samples are being prepared for AST testing. The system tracks the sample and the inoculates from the samples to link the test results to the sample and the patients from whom the sample was obtained.
    Type: Application
    Filed: April 5, 2019
    Publication date: August 1, 2019
    Inventors: Robert Edward Armstrong, John Thulin Page, Ben Turng, Glen Richard Davis, Strett Roger Nicolson, Timothy Hansen
  • Patent number: 10294508
    Abstract: An automated system for identifying in a biological sample microorganisms and their antimicrobial susceptibility (AST). The system provided an automated platform for preparing, from a single biological sample, inoculates for both ID and AST. The system loads a plate for ID testing as samples are being prepared for AST testing. The system tracks the sample and the inoculates from the samples to link the test results to the sample and the patients from whom the sample was obtained.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: May 21, 2019
    Assignee: Becton, Dickinson and Company
    Inventors: Robert Edward Armstrong, John Thulin Page, Ben Turng, Glen Richard Davis, Strett Roger Nicolson, Timothy Hansen
  • Patent number: 10253355
    Abstract: A system for automated microorganism identification and antibiotic susceptibility testing comprising a reagent cartridge, a reagent stage, a cassette, a cassette, stage, a pipettor assembly, an optical detection system, and a controller is disclosed. The system is designed to dynamically adjust motor idle torque to control heat load and employs a fast focus process for determining the true focus position of an individual microorganism. The system also may quantify the relative abundance of viable microorganisms in a sample using dynamic dilution, and facilitate growth of microorganisms in customized media for rapid, accurate antimicrobial susceptibility testing. Automated quality control test components and methods of their use are also disclosed.
    Type: Grant
    Filed: October 3, 2016
    Date of Patent: April 9, 2019
    Assignee: Accelerate Diagnostics, Inc.
    Inventors: William L. Richards, Austin Ashby, Matthew Ketterer, Kevin Marshall, Josh Harrison, Matthew Mette, Paul Richards, Wayne Showalter, Jasmin Cote, Phillip C. Halbert, Solene Bourgeois, Steven W. Metzger, Ken Hance, Meghan Mensack, Carlos Michel, Elke Allers, Dulini Gamage, Landon Prisbrey, Oleg Gusyatin, Alena Shamsheyeva, Ben Turng, Andrew Ghusson, Kurt Reinhardt
  • Publication number: 20180291419
    Abstract: A system for automated microorganism identification and antibiotic susceptibility testing comprising a reagent cartridge, a reagent stage, a cassette, a cassette, stage, a pipettor assembly, an optical detection system, and a controller is disclosed. The system is designed to dynamically adjust motor idle torque to control heat load and employs a fast focus process for determining the true focus position of an individual microorganism. The system also may quantify the relative abundance of viable microorganisms in a sample using dynamic dilution, and facilitate growth of microorganisms in customized media for rapid, accurate antimicrobial susceptibility testing.
    Type: Application
    Filed: June 13, 2018
    Publication date: October 11, 2018
    Applicant: Accelerate Diagnostics, Inc.
    Inventors: William L. Richards, Austin Ashby, Matthew Ketterer, Kevin Marshall, Josh Harrison, Matthew Mette, Paul Richards, Wayne Showalter, Jasmin Cote, Steven W. Metzger, Ken Hance, Meghan Mensack, Carlos Michel, Elke Allers, Dulini Gamage, Landon Prisbrey, Oleg Gusyatin, Alena Shamsheyeva, Ben Turng, Andrew Ghusson, Kurt Reinhardt, Phillip C. Halbert, Solene Bourgeois
  • Patent number: 10023895
    Abstract: A system for automated microorganism identification and antibiotic susceptibility testing comprising a reagent cartridge, a reagent stage, a cassette, a cassette, stage, a pipettor assembly, an optical detection system, and a controller is disclosed. The system is designed to dynamically adjust motor idle torque to control heat load and employs a fast focus process for determining the true focus position of an individual microorganism. The system also may quantify the relative abundance of viable microorganisms in a sample using dynamic dilution, and facilitate growth of microorganisms in customized media for rapid, accurate antimicrobial susceptibility testing.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: July 17, 2018
    Assignee: Accelerate Diagnostics, Inc.
    Inventors: William L. Richards, Austin Ashby, Matthew Ketterer, Kevin Marshall, Josh Harrison, Matthew Mette, Paul Richards, Wayne Showalter, Jasmin Cote, Phillip C. Halbert, Solene Bourgeois, Steven W. Metzger, Ken Hance, Meghan Mensack, Carlos Michel, Elke Allers, Dulini Gamage, Landon Prisbrey, Oleg Gusyatin, Alena Shamsheyeva, Ben Turng, Andrew Ghusson, Kurt Reinhardt
  • Publication number: 20170204448
    Abstract: Rapid methods that identify sepsis-causing bacteria or yeast aid the physician in critical therapeutic decision-making, thus decreasing patient mortality rates. The methods described herein employ plating microorganisms directly on to a MALDI-MS plate, adding concentrated formic acid, and identifying the microorganism by mass spectrometry. Optionally, an organic solvent may be combined with the formic acid, or added to the sample before or after the concentrated formic acid is added thereto. The methods enable direct extraction of proteins from microorganisms without the need for liquid protein extraction methods and yields positive identification results for gram-positive bacteria, gram-negative bacteria and yeast in minutes.
    Type: Application
    Filed: March 29, 2017
    Publication date: July 20, 2017
    Inventors: Liping Feng, William B. Brasso, Susan M. Kircher, Vanda White, Song Shi, Xiao Mo, Tuan-Linh Ngoc Nguyen, Adrien P. Malick, Jon E. Salomon, John D. Mantlo, Mary R. Votta, Ben Turng, Donald R. Callihan, Wendy Louise Williams
  • Publication number: 20170023599
    Abstract: A system for automated microorganism identification and antibiotic susceptibility testing comprising a reagent cartridge, a reagent stage, a cassette, a cassette, stage, a pipettor assembly, an optical detection system, and a controller is disclosed. The system is designed to dynamically adjust motor idle torque to control heat load and employs a fast focus process for determining the true focus position of an individual microorganism. The system also may quantify the relative abundance of viable microorganisms in a sample using dynamic dilution, and facilitate growth of microorganisms in customized media for rapid, accurate antimicrobial susceptibility testing. Automated quality control test components and methods of their use are also disclosed.
    Type: Application
    Filed: October 3, 2016
    Publication date: January 26, 2017
    Applicant: Accelerate Diagnostics, Inc.
    Inventors: William L. Richards, Austin Ashby, Matthew Ketterer, Kevin Marshall, Josh Harrison, Matthew Mette, Paul Richards, Wayne Showalter, Jasmin Cote, Phillip C. Halbert, Solene Bourgeois, Steven W. Metzger, Ken Hance, Meghan Mensack, Carlos Michel, Elke Allers, Dulini Gamage, Landon Prisbrey, Oleg Gusyatin, Alena Shamsheyeva, Ben Turng, Andrew Ghusson, Kurt Reinhardt
  • Publication number: 20160289729
    Abstract: A system for automated microorganism identification and antibiotic susceptibility testing comprising a reagent cartridge, a reagent stage, a cassette, a cassette, stage, a pipettor assembly, an optical detection system, and a controller is disclosed. The system is designed to dynamically adjust motor idle torque to control heat load and employs a fast focus process for determining the true focus position of an individual microorganism. The system also may quantify the relative abundance of viable microorganisms in a sample using dynamic dilution, and facilitate growth of microorganisms in customized media for rapid, accurate antimicrobial susceptibility testing.
    Type: Application
    Filed: March 30, 2016
    Publication date: October 6, 2016
    Applicant: Accelerate Diagnostics, Inc.
    Inventors: William L. Richards, Austin Ashby, Matthew Ketterer, Kevin Marshall, Josh Harrison, Matthew Mette, Paul Richards, Wayne Showalter, Jasmin Cote, Phillip C. Halbert, Solene Bourgeois, Steven W. Metzger, Ken Hance, Meghan Mensack, Carlos Michel, Elke Allers, Dulini Gamage, Landon Prisbrey, Oleg Gusyatin, Alena Shamsheyeva, Ben Turng, Andrew Ghusson, Kurt Reinhardt
  • Publication number: 20160265022
    Abstract: An apparatus and associated methods of use for a controlled combination of reagents is disclosed. The apparatus includes a vessel 400, a vessel insert 220, and a cap element 200. The vessel 400 has a body portion 410 for receiving a biological sample. The vessel insert 220 receives at least one reagent therein. Preferably, the vessel insert 220 is received in a portion 420 of the vessel 400. The cap element 200 is attached to the vessel 400 to secure the vessel insert 220 in the vessel 400. During use, the vessel insert 220 is adapted to release its contents when the biological sample is introduced into the body portion 410 of the vessel 400 upon application of an intermixing force to the vessel insert 220. A variety of intermixing forces may be applied, depending upon the embodiment of the present invention and its associated methods of use.
    Type: Application
    Filed: October 24, 2014
    Publication date: September 15, 2016
    Applicant: BECTON, DICKINSON AND COMPANY
    Inventors: Mei Yang-Woytowitz, Brent Pohl, Gary F. Hershner, Dwight Livingston, Eric Ursprung, Gerard Lotz, Kevin Bailey, Ammon David Lentz, Michael A. Brasch, Ming-hsiung Yeh, Patrick Shawn Beaty, Charles C. Yu, Timothy M. Wiles, Liping Feng, Ben Turng, Xiaofei Chang, Patrick R. Murray
  • Publication number: 20160040210
    Abstract: An automated system for identifying in a biological sample microorganisms and their antimicrobial susceptibility (AST). The system provided an automated platform for preparing, from a single biological sample, inoculates for both ID and AST. The system loads a plate for ID testing as samples are being prepared for AST testing. The system tracks the sample and the inoculates from the samples to link the test results to the sample and the patients from whom the sample was obtained.
    Type: Application
    Filed: October 19, 2015
    Publication date: February 11, 2016
    Inventors: Robert Edward Armstrong, John Thulin Page, Ben Turng, Glen Richard Davis, Strett Roger Nicolson, Timothy Hansen
  • Patent number: 9180448
    Abstract: An automated system for identifying in a biological sample microorganisms and their antimicrobial susceptibility (AST). The system provided an automated platform for preparing, from a single biological sample, inoculates for both ID and AST. The system loads a plate for ID testing as samples are being prepared for AST testing. The system tracks the sample and the inoculates from the samples to link the test results to the sample and the patients from whom the sample was obtained.
    Type: Grant
    Filed: July 6, 2011
    Date of Patent: November 10, 2015
    Assignee: Becton, Dickinson and Company
    Inventors: Robert Edward Armstrong, John Thuin Page, Ben Turng, Glen Richard Davis, Strett Roger Nicolson, Timothy Hansen
  • Publication number: 20150125895
    Abstract: Various embodiments disclosed herein provide for reagents and methods for rapidly isolating viable microbial cells, including S. pneumoniae, from positive blood culture samples. The resulting microbial pellet can be used for both identification and growth-based methods such as antimicrobial susceptibility testing. The buffers described herein may contain a base solution, non-ionic detergents, thiols, and optionally, ammonium chloride. The disclosed methods provide a process for rapidly isolating and concentrating viable microorganism (s) from PBC samples using only one sample preparation tube and centrifugation while removing cellular debris from the mammalian blood cells that may interfere with identification methods.
    Type: Application
    Filed: February 28, 2013
    Publication date: May 7, 2015
    Applicant: Becton, Dickinson and Company
    Inventors: Susan M. Kircher, Vanda White, William B. Brasso, Dyan Luper, James Y. Zhou, Julie L. Rosales, Jeffery H. Bruton, John D. Mantlo, Adrien P. Malick, Donald R. Callihan, Ben Turng, Liping Feng, Curtis M. Gosnell, Patrick Shawn Beaty, John P. Douglass