Patents by Inventor Ben W. Moscherosch

Ben W. Moscherosch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10480391
    Abstract: A coolant control system of a vehicle includes first and second target flowrate modules, a target speed module, and a speed control module. The first target flowrate module determines a first target flowrate of coolant through an engine. The second target flowrate module, when a change in heat input to the engine is greater than a predetermined value, sets a second target flowrate to greater than the first target flowrate. The target speed module determines a target speed of an engine coolant pump based on the second target flowrate. The speed control module controls a speed of the engine coolant pump based on the target speed.
    Type: Grant
    Filed: September 24, 2014
    Date of Patent: November 19, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Eugene V. Gonze, Yue-Ming Chen, Vijay Ramappan, Ben W. Moscherosch
  • Patent number: 10066564
    Abstract: An engine control system for a vehicle includes an oxygen mass flow rate module, an oxygen per cylinder module, and a fuel control module. The oxygen mass flow rate module generates a mass flow rate of oxygen flowing into an engine based on a mass air flow rate (MAF) into the engine and a percentage of oxygen by volume measured using an intake oxygen (IO) sensor in an intake system. The oxygen per cylinder module generates a mass of oxygen for a combustion event of a cylinder of the engine based on the mass flow rate of oxygen flowing into the engine. The fuel control module controls fueling to the cylinder for the combustion event based on the mass of oxygen.
    Type: Grant
    Filed: June 7, 2012
    Date of Patent: September 4, 2018
    Assignee: GM Global Technology Operations LLC
    Inventors: B. Jerry Song, Ethan E. Bayer, Ben W. Moscherosch, Calvin K. Koch
  • Patent number: 9909513
    Abstract: A technique for fuel system protection for an internal combustion engine includes introducing a directly injected fuel into a combustion chamber through a direct fuel injector, introducing a fumigated fuel upstream of an intake valve, selectively operating the internal combustion engine with at least one of the directly injected fuel and the fumigated fuel, determining a temperature of the direct fuel injector as a first function of engine operating parameters, and performing a temperature mitigation technique when the temperature rises above a first predetermined value such that the temperature is maintained below a second predetermined value.
    Type: Grant
    Filed: December 14, 2014
    Date of Patent: March 6, 2018
    Assignees: WESTPORT POWER INC., GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Raymond Bzymek, Mark E. Dunn, Ning Wu, Dehong Zhang, Craig D. Marriott, Joshua D. Cowgill, Ben W. Moscherosch
  • Patent number: 9719408
    Abstract: A method is disclosed for improving fuel economy in an internal combustion engine. The method may involve sensing a temperature of an engine block and determining a block thermal energy representing an ability of the block to reject heat. An open loop control scheme may be used together with the block thermal energy to predict if a coolant in the block is about to enter a boiling condition and, when this is about to occur, to open a block valve to permit a flow of coolant through the block. A closed loop control scheme may be used together with the sensed temperature of the block to determine if a coolant boiling condition is about to occur, and to control the block valve to permit a flow of coolant through the block which is just sufficient to prevent the onset of coolant boiling in the block.
    Type: Grant
    Filed: October 3, 2014
    Date of Patent: August 1, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Eugene V. Gonze, Yue-Ming Chen, Vijay Ramappan, Ben W. Moscherosch
  • Patent number: 9611781
    Abstract: A system and method of thermal management for an engine are provided. The system includes an engine, an electrical water pump, and a controller. The controller has a processor and tangible, non-transitory memory on which is recorded instructions. Executing the recorded instructions causes the processor to continuously monitor the temperature of the cylinder head and the temperature of the coolant. If the monitored temperatures of the cylinder head and the coolant are below predetermined thresholds, the processor executes a first control action, in which the pump remains off and the coolant remains stagnant. If either of the monitored temperatures of the cylinder head or coolant reaches the respective predetermined threshold, the controller initiates a second control action, which requires the controller to signal the pump to turn on and circulate coolant. The controller then determines the desired operating speed of the electrical water pump based on engine load.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: April 4, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Ben W. Moscherosch, Akram R. Zahdeh
  • Patent number: 9429081
    Abstract: An engine control system is described. A cylinder control module selectively activates and deactivates intake and exhaust valves of a cylinder of an engine. A fuel control module disables fueling of the cylinder when the intake and exhaust valves of the cylinder are deactivated and, when the intake and exhaust valves of the cylinder are activated after being deactivated for at least one combustion cycle of the cylinder, adjusts fueling of the cylinder based on a predetermined reactivation fueling adjustment set for the cylinder.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: August 30, 2016
    Assignee: GM Global Technology Operations LLC
    Inventors: Ben W. Moscherosch, Hector Arvizu Dal Piaz
  • Publication number: 20160201548
    Abstract: A system and method of thermal management for an engine are provided. The system includes an engine, an electrical water pump, and a controller. The controller has a processor and tangible, non-transitory memory on which is recorded instructions. Executing the recorded instructions causes the processor to continuously monitor the temperature of the cylinder head and the temperature of the coolant. If the monitored temperatures of the cylinder head and the coolant are below predetermined thresholds, the processor executes a first control action, in which the pump remains off and the coolant remains stagnant. If either of the monitored temperatures of the cylinder head or coolant reaches the respective predetermined threshold, the controller initiates a second control action, which requires the controller to signal the pump to turn on and circulate coolant. The controller then determines the desired operating speed of the electrical water pump based on engine load.
    Type: Application
    Filed: January 9, 2015
    Publication date: July 14, 2016
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Ben W. Moscherosch, Akram R. Zahdeh
  • Patent number: 9303605
    Abstract: A fuel supply system for supplying a bi-fuel engine with a first fuel type, e.g., gasoline, includes a cooling circuit. The cooling circuit circulates the first fuel type through a direct injection pump assembly to prevent the first fuel type from overheating within the direct injection pump assembly.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: April 5, 2016
    Assignee: GM Global Technology Operations LLC
    Inventors: Craig D. Marriott, Ben W. Moscherosch
  • Publication number: 20160053665
    Abstract: A method is disclosed for improving fuel economy in an internal combustion engine. The method may involve sensing a temperature of an engine block and determining a block thermal energy representing an ability of the block to reject heat. An open loop control scheme may be used together with the block thermal energy to predict if a coolant in the block is about to enter a boiling condition and, when this is about to occur, to open a block valve to permit a flow of coolant through the block. A closed loop control scheme may be used together with the sensed temperature of the block to determine if a coolant boiling condition is about to occur, and to control the block valve to permit a flow of coolant through the block which is just sufficient to prevent the onset of coolant boiling in the block.
    Type: Application
    Filed: October 3, 2014
    Publication date: February 25, 2016
    Inventors: Eugene V. Gonze, Yue-Ming Chen, Vijay Ramappan, Ben W. Moscherosch
  • Publication number: 20160047293
    Abstract: A coolant control system of a vehicle includes first and second target flowrate modules, a target speed module, and a speed control module. The first target flowrate module determines a first target flowrate of coolant through an engine. The second target flowrate module, when a change in heat input to the engine is greater than a predetermined value, sets a second target flowrate to greater than the first target flowrate. The target speed module determines a target speed of an engine coolant pump based on the second target flowrate. The speed control module controls a speed of the engine coolant pump based on the target speed.
    Type: Application
    Filed: September 24, 2014
    Publication date: February 18, 2016
    Inventors: EUGENE V. GONZE, YUE-MING CHEN, VIJAY RAMAPPAN, BEN W. MOSCHEROSCH
  • Publication number: 20150308355
    Abstract: An engine control system is described. A cylinder control module selectively activates and deactivates intake and exhaust valves of a cylinder of an engine. A fuel control module disables fueling of the cylinder when the intake and exhaust valves of the cylinder are deactivated and, when the intake and exhaust valves of the cylinder are activated after being deactivated for at least one combustion cycle of the cylinder, adjusts fueling of the cylinder based on a predetermined reactivation fueling adjustment set for the cylinder.
    Type: Application
    Filed: April 25, 2014
    Publication date: October 29, 2015
    Applicant: GM Global Technology Operations LLC
    Inventors: BEN W. MOSCHEROSCH, Hector Arvizu Dal Piaz
  • Patent number: 9169789
    Abstract: A control system for an engine includes a fuel mass determination module, a mass fraction determination module, and a fuel injector control module. The fuel mass determination module determines a first minimum fuel mass corresponding to a first fuel system of the engine. The mass fraction determination module determines first minimum and maximum mass fractions based on the first minimum fuel mass and a total fuel mass. The fuel injector control module limits a first desired mass fraction based on the first minimum and maximum mass fractions, and controls a first fuel injector of the engine based on the limited first desired mass fraction.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: October 27, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Joshua Cowgill, Ben W. Moscherosch
  • Patent number: 9127601
    Abstract: A control system for an engine includes an valve actuator, a cylinder pressure module, and a valve control module. The valve actuator opens a valve of a cylinder at a first target opening timing during a first combustion cycle of the cylinder. The cylinder pressure module receives a cylinder pressure measured by a cylinder pressure sensor of the cylinder and, at a predetermined crankshaft angle after the valve opens during the first combustion cycle, sets a valve opening pressure equal to the cylinder pressure. The valve control module receives a reference cylinder pressure and generates a second target opening timing for a second combustion cycle of the cylinder based on the valve opening pressure and the reference cylinder pressure. The second combustion cycle is after the first combustion cycle. During the second combustion cycle, the valve actuator opens the valve at the second target opening timing.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: September 8, 2015
    Inventors: Joel Cowgill, Ben W. Moscherosch
  • Patent number: 9097224
    Abstract: A method for a multi-fuel vehicle includes: determining a first target amount of fuel to be injected for a combustion event of a combustion chamber of an engine; determining first and second fractions for the combustion event based on at least one of engine speed, engine load, and engine temperature; determining a second target amount of liquid fuel for the combustion event based on the first target amount and the first fraction; determining a third target amount of gaseous fuel for the combustion event based on the first target amount and the second fraction; selectively injecting a liquid fuel directly into the combustion chamber for the combustion event based on the second target amount and using a first fuel injector; and selectively injecting a gaseous fuel into a port of the combustion chamber for the combustion event based on the third target amount and using a second fuel injector.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: August 4, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Ben W. Moscherosch, Craig D. Marriott, Joshua Cowgill
  • Publication number: 20150096530
    Abstract: A technique for fuel system protection for an internal combustion engine includes introducing a directly injected fuel into a combustion chamber through a direct fuel injector, introducing a fumigated fuel upstream of an intake valve, selectively operating the internal combustion engine with at least one of the directly injected fuel and the fumigated fuel, determining a temperature of the direct fuel injector as a first function of engine operating parameters, and performing a temperature mitigation technique when the temperature rises above a first predetermined value such that the temperature is maintained below a second predetermined value.
    Type: Application
    Filed: December 14, 2014
    Publication date: April 9, 2015
    Inventors: Raymond Bzymek, Mark E. Dunn, Ning Wu, Dehong Zhang, Craig D. Marriott, Joshua D. Cowgill, Ben W. Moscherosch
  • Patent number: 8868319
    Abstract: A control system for a homogeneous charge compression ignition (HCCI) engine includes first and second modules. The first module determines an adjusted intake valve opening (IVO) timing based on a base IVO timing and an IVO timing adjustment, wherein the IVO timing adjustment is based on one or more of a plurality of operating parameters. The second module controls intake valves of the HCCI engine based on the adjusted IVO timing.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: October 21, 2014
    Inventors: Darrell W. Burleigh, Vijay Ramappan, Ben W. Moscherosch
  • Patent number: 8798891
    Abstract: A method is provided for controlling a hybrid electric vehicle that includes an internal combustion engine having a cylinder provided with an intake valve, an exhaust valve, and a piston configured to rotate the engine's crankshaft. The method includes determining whether deceleration of the vehicle is desired and also includes ceasing supply of fuel to the cylinder when such condition is satisfied. The method additionally includes selecting a fuel-off actuation arrangement for the intake valve via a mechanism configured to provide variable valve timing and lift, such that a magnitude of compression pulses in the cylinder during deceleration is limited. A system for controlling the hybrid vehicle and a vehicle employing such a system are also provided.
    Type: Grant
    Filed: July 6, 2011
    Date of Patent: August 5, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Craig D. Marriott, Ben W. Moscherosch
  • Patent number: 8755987
    Abstract: A control system for a homogeneous charge compression ignition (HCCI) engine includes first and second modules. The first module determines a load on the HCCI engine when the HCCI engine is operating in an HCCI combustion mode. The second module controls torque generated by the HCCI engine based on the determined load and a predetermined threshold, wherein the second module controls the torque generated by the HCCI engine by controlling fueling of the HCCI engine.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: June 17, 2014
    Inventors: Vijay Ramappan, Darrell W. Burleigh, Ben W. Moscherosch
  • Publication number: 20140046571
    Abstract: A control system for an engine includes an valve actuator, a cylinder pressure module, and a valve control module. The valve actuator opens a valve of a cylinder at a first target opening timing during a first combustion cycle of the cylinder. The cylinder pressure module receives a cylinder pressure measured by a cylinder pressure sensor of the cylinder and, at a predetermined crankshaft angle after the valve opens during the first combustion cycle, sets a valve opening pressure equal to the cylinder pressure. The valve control module receives a reference cylinder pressure and generates a second target opening timing for a second combustion cycle of the cylinder based on the valve opening pressure and the reference cylinder pressure. The second combustion cycle is after the first combustion cycle. During the second combustion cycle, the valve actuator opens the valve at the second target opening timing.
    Type: Application
    Filed: August 7, 2012
    Publication date: February 13, 2014
    Applicant: GM Global Technology Operations LLC
    Inventors: Joel Cowgill, Ben W. Moscherosch
  • Publication number: 20130332050
    Abstract: An engine control system for a vehicle includes an oxygen mass flow rate module, an oxygen per cylinder module, and a fuel control module. The oxygen mass flow rate module generates a mass flow rate of oxygen flowing into an engine based on a mass air flow rate (MAF) into the engine and a percentage of oxygen by volume measured using an intake oxygen (IO) sensor in an intake system. The oxygen per cylinder module generates a mass of oxygen for a combustion event of a cylinder of the engine based on the mass flow rate of oxygen flowing into the engine. The fuel control module controls fueling to the cylinder for the combustion event based on the mass of oxygen.
    Type: Application
    Filed: June 7, 2012
    Publication date: December 12, 2013
    Applicant: GM Global Technology Operations LLC
    Inventors: B. Jerry Song, Ethan E. Bayer, Ben W. Moscherosch, Calvin K. Koch