Patents by Inventor Benjamin A. Flusberg

Benjamin A. Flusberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170122929
    Abstract: The invention relates to devices and methods for nanopore sequencing. Methods for controlling translocation of through the nanopore are disclosed. The rate of transport of the template nucleic acids through the nanopore can be controlled using a translocating enzyme having two slow kinetic steps. The translocating enzyme and reaction conditions can be selected such that the translocating enzyme exhibits two kinetic steps wherein each of the kinetic steps has a rate constant, and the ratio of the rate constants of the kinetic steps is from 10:1 to 1:10. The invention also provides for using the signals from n-mers to provide sequence information, for example where the system has less than single base resolution. The invention includes arrays of nanopores having incorporated electronic circuits, for example, in CMOS.
    Type: Application
    Filed: December 1, 2016
    Publication date: May 4, 2017
    Inventors: Stephen Turner, Benjamin Flusberg
  • Patent number: 9636020
    Abstract: Analysis of live beings is facilitated. According to an example embodiment of the present invention, a light-directing arrangement such as an endoscope is mounted to a live being. Optics in the light-directing arrangement are implemented to pass source light (e.g., laser excitation light) into the live being, and to pass light from the live being for detection thereof. The light from the live being may include, for example, photons emitted in response to the laser excitation light (i.e., fluoresced). The detected light is then used to detect a characteristic of the live being.
    Type: Grant
    Filed: July 2, 2014
    Date of Patent: May 2, 2017
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Benjamin A. Flusberg, Eric David Cocker, Juergen Claus Jung, Mark Jacob Schnitzer
  • Patent number: 9546400
    Abstract: The invention relates to devices and methods for nanopore sequencing. The invention provides for using the signals from n-mers to provide sequence information, for example where the system has less than single base resolution. The invention includes arrays of nanopores having incorporated electronic circuits, for example, in CMOS. In some cases, the arrays of nanopores comprise resistive openings for isolating the electronic signals for improved sequencing. Methods for controlling translocation of through the nanopore are disclosed.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: January 17, 2017
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Stephen Turner, Benjamin Flusberg
  • Patent number: 9411149
    Abstract: Micro-optical imaging is facilitated. According to an example embodiment, a micro-optical probe arrangement includes a GRIN-type lens probe to direct light to and from a specimen. Compensation optics tailored to the probe and aberrations introduced by the lens are located in a light path through the lens, and compensate for the introduced aberrations. A light detector detects light from the specimen, as facilitated by the compensation optics, and generates data characterizing an image of the specimen.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: August 9, 2016
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Benjamin A. Flusberg, Mark Jacob Schnitzer, Tony H. Ko
  • Publication number: 20160153038
    Abstract: Methods, compositions, and systems are provided for characterization of modified nucleic acids. In certain preferred embodiments, single molecule sequencing methods are provided for identification of modified nucleotides within nucleic acid sequences. Modifications detectable by the methods provided herein include chemically modified bases, enzymatically modified bases, abasic sites, non-natural bases, secondary structures, and agents bound to a template nucleic acid.
    Type: Application
    Filed: September 23, 2015
    Publication date: June 2, 2016
    Inventors: Benjamin Flusberg, Jonas Korlach, Jeffrey Wegener, Tyson A. Clark, Igor Drasko Vilfan, Andrey Kislyuk, Stephen Turner, Jon Sorenson, Kevin Travers, Cheryl Heiner, Austin B. Tomaney, Patrick Marks, Jessica Lee, Lei Jia, Dale Webster, John Lyle, Jeremiah Hanes
  • Publication number: 20150362503
    Abstract: The present invention is generally directed to compositions, methods, and systems for performing single-molecule, real-time analysis of a variety of different biological reactions, and for determining various characteristics of the different biological reactions. The ability to analyze such reactions provides an opportunity to study those reactions as well as to potentially identify factors and/or approaches for impacting such reactions, e.g., to stimulate, enhance, or inhibit such reactions.
    Type: Application
    Filed: June 10, 2015
    Publication date: December 17, 2015
    Inventors: Jonas Korlach, Stephen Turner, Benjamin Flusberg, Mark Chaisson, Eric Schadt, Jeffrey Wegener
  • Patent number: 9175338
    Abstract: Methods, compositions, and systems are provided for characterization of modified nucleic acids. In certain preferred embodiments, single molecule sequencing methods are provided for identification of modified nucleotides within nucleic acid sequences. Modifications detectable by the methods provided herein include chemically modified bases, enzymatically modified bases, abasic sites, non-natural bases, secondary structures, and agents bound to a template nucleic acid.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: November 3, 2015
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Benjamin Flusberg, Jonas Korlach, Jeffrey Wegener, Tyson A. Clark, Igor Vilfan, Andrey Kislyuk, Stephen Turner, Jon Sorenson, Kevin Travers, Cheryl Heiner, Austin B. Tomaney, Patrick Marks, Jessica Lee, Lei Jia, Dale Webster, John Lyle, Jeremiah Hanes, Joseph Puglisi
  • Patent number: 9175341
    Abstract: Methods, compositions, and systems are provided for characterization of modified nucleic acids. In certain preferred embodiments, single molecule sequencing methods are provided for identification of modified nucleotides within nucleic acid sequences. Modifications detectable by the methods provided herein include chemically modified bases, enzymatically modified bases, abasic sites, non-natural bases, secondary structures, and agents bound to a template nucleic acid.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: November 3, 2015
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Benjamin Flusberg, Stephen Turner, Jessica Lee, Lei Jia, Jonas Korlach, Jon Sorenson, Dale Webster, John Lyle, Kevin Travers, Jeremiah Hanes, Joseph Puglisi
  • Patent number: 9121064
    Abstract: The invention relates to devices and methods for nanopore sequencing. The invention provides for using the signals from n-mers to provide sequence information, for example where the system has less than single base resolution. The invention includes arrays of nanopores having incorporated electronic circuits, for example, in CMOS. In some cases, the arrays of nanopores comprise resistive openings for isolating the electronic signals for improved sequencing. Methods for controlling translocation of through the nanopore are disclosed.
    Type: Grant
    Filed: February 10, 2015
    Date of Patent: September 1, 2015
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Stephen Turner, Benjamin Flusberg
  • Patent number: 9063156
    Abstract: The present invention is generally directed to compositions, methods, and systems for performing single-molecule, real-time analysis of a variety of different biological reactions, and for determining various characteristics of the different biological reactions. The ability to analyze such reactions provides an opportunity to study those reactions as well as to potentially identify factors and/or approaches for impacting such reactions, e.g., to stimulate, enhance, or inhibit such reactions.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: June 23, 2015
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Jonas Korlach, Stephen Turner, Benjamin Flusberg, Mark Chaisson, Eric Schadt, Jeffrey Wegener
  • Publication number: 20150159213
    Abstract: The invention relates to devices and methods for nanopore sequencing. The invention provides for using the signals from n-mers to provide sequence information, for example where the system has less than single base resolution. The invention includes arrays of nanopores having incorporated electronic circuits, for example, in CMOS. In some cases, the arrays of nanopores comprise resistive openings for isolating the electronic signals for improved sequencing. Methods for controlling translocation of through the nanopore are disclosed.
    Type: Application
    Filed: February 10, 2015
    Publication date: June 11, 2015
    Inventors: Stephen Turner, Benjamin Flusberg
  • Publication number: 20150141266
    Abstract: Methods, compositions and arrays for non-random loading of single analyte molecules into array structures are provided. For example, methods are presented for providing a surface comprising the plurality of array regions by exposing the surface to a solution comprising polymerase enzymes where each polymerase enzyme is bound to a binding structure having several functional moieties. The functional moieties of the binding structure react with the binding elements on the array regions such that the functional moieties on the binding structure react with other available binding sites in an array region, preventing other polymerase-binding structures from loading, and resulting in a single polymerase molecule bound to each of these regions.
    Type: Application
    Filed: November 4, 2014
    Publication date: May 21, 2015
    Inventors: Stephen Turner, Benjamin Flusberg, Lei Sun
  • Patent number: 8986928
    Abstract: The invention relates to devices and methods for nanopore sequencing. The invention includes arrays of nanopores having incorporated electronic circuits, for example, in CMOS. In some cases, the arrays of nanopores comprise resistive openings for isolating the electronic signals for improved sequencing. Methods for controlling translocation of through the nanopore are disclosed.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: March 24, 2015
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Stephen Turner, Benjamin Flusberg, Mathieu Foquet, Hans Callebaut, Robert Sebra, Bidhan Chaudhuri, Jon Sorenson, Keith Bjornson, Adrian Fehr, Jonas Korlach, Robin Emig
  • Publication number: 20150057549
    Abstract: Analysis of live beings is facilitated. According to an example embodiment of the present invention, a light-directing arrangement such as an endoscope is mounted to a live being. Optics in the light-directing arrangement are implemented to pass source light (e.g., laser excitation light) into the live being, and to pass light from the live being for detection thereof. The light from the live being may include, for example, photons emitted in response to the laser excitation light (i.e., fluoresced). The detected light is then used to detect a characteristic of the live being.
    Type: Application
    Filed: July 2, 2014
    Publication date: February 26, 2015
    Inventors: Benjamin A. Flusberg, Eric David Cocker, Juergen Claus Jung, Mark Jacob Schnitzer
  • Patent number: 8906831
    Abstract: Methods for non-random loading of single analyte molecules into array structures are provided. The methods allow for distribution of a population of target molecules into a plurality of size confined regions such as wells. Sizing moieties are linked to individual target molecules. The sizing moieties are of sufficient size, relative to the size-confined reaction or observation regions, such that only a selected number of sizing moieties will fit into the size confined regions. The confined regions and the sizing moieties or target molecules comprise a selected charge that allow for controlling the loading of the sizing moities.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: December 9, 2014
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: John Eid, Stephen Turner, Ravi Dalal, Benjamin Flusberg, Jonas Korlach, Steven Lin, Adrian Fehr, Fred Christians, Robin Emig, Jeremy Gray, Robert Sebra, Lei Sun, Stephen Dudek
  • Patent number: 8788021
    Abstract: Analysis of live beings is facilitated. According to an example embodiment of the present invention, a light-directing arrangement such as an endoscope is mounted to a live being. Optics in the light-directing arrangement are implemented to pass source light (e.g., laser excitation light) into the live being, and to pass light from the live being for detection thereof. The light from the live being may include, for example, photons emitted in response to the laser excitation light (i.e., fluoresced). The detected light is then used to detect a characteristic of the live being.
    Type: Grant
    Filed: January 24, 2006
    Date of Patent: July 22, 2014
    Assignee: The Board of Trustees of the Leland Stanford Junior Univerity
    Inventors: Benjamin A. Flusberg, Eric David Cocker, Juergen Claus Jung, Mark Jacob Schnitzer
  • Publication number: 20140061048
    Abstract: The invention relates to devices and methods for nanopore sequencing. The invention provides for using the signals from n-mers to provide sequence information, for example where the system has less than single base resolution. The invention includes arrays of nanopores having incorporated electronic circuits, for example, in CMOS. In some cases, the arrays of nanopores comprise resistive openings for isolating the electronic signals for improved sequencing. Methods for controlling translocation of through the nanopore are disclosed.
    Type: Application
    Filed: September 13, 2013
    Publication date: March 6, 2014
    Applicant: Pacific Biosciences of California, Inc.
    Inventors: Stephen Turner, Benjamin Flusberg
  • Patent number: 8609421
    Abstract: The present invention is generally directed to compositions, methods, and systems for performing single-molecule, real-time analysis of analytical reactions in which protein synthesis is occurring. The ability to analyze such reactions provides an opportunity to study those reactions as well as to potentially identify factors and/or approaches for impacting such reactions, e.g., to either enhance, inhibit, or otherwise affect such reactions including, but not limited to, affecting the reaction rate, processivity, fidelity, duration, and the like.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: December 17, 2013
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Benjamin Flusberg, Stephen Turner, Jonas Korlach, Eric Schadt
  • Publication number: 20130316916
    Abstract: Methods, compositions, and systems are provided for characterization of modified nucleic acids. In certain preferred embodiments, single molecule sequencing methods are provided for identification of modified nucleotides within nucleic acid sequences. Modifications detectable by the methods provided herein include chemically modified bases, enzymatically modified bases, abasic sites, non-natural bases, secondary structures, and agents bound to a template nucleic acid.
    Type: Application
    Filed: June 28, 2013
    Publication date: November 28, 2013
    Inventors: Benjamin Flusberg, Stephen Turner, Jessica Lee, Lei Jia, Jonas Korlach, Jon Sorenson, Dale Webster, John Lyle, Kevin Travers, Jeremiah Hanes, Joseph Puglisi
  • Patent number: 8383369
    Abstract: Methods, devices, and systems for performing intermittent detection during analytical reactions are provided. Such methods facilitate collection of reaction data from disparate reaction times. Further, such methods are useful for reducing photo-induced damage of one or more reactants in an illuminated analytical reaction at a given reaction time. In preferred embodiments, the reaction mixture is subjected to at least one illuminated and non-illuminated period and allowed to proceed such that the time in which the reaction mixture is illuminated is less than a photo-induced damage threshold period.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: February 26, 2013
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Kenneth Mark Maxham, Jon Sorenson, John Eid, Patrick Marks, Kevin Travers, Donald Gray, Robin Emig, Mark Chaisson, Benjamin Flusberg