Patents by Inventor Benjamin B. Jian

Benjamin B. Jian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11747574
    Abstract: A ferrule mold having a reverse-image of a through-hole array for optical fibers is formed. A non-polymeric ferrule material is deposited in the reverse-image mold, followed by removing the mold to create a multi-fiber connector ferrule having at least two fiber through-holes. An optical fiber is inserted in each through-hole until each fiber endface is positioned approximately even with a connection surface of the ferrule. A fiber recess for each of the optical fibers is formed such that each fiber is recessed from the multi-fiber ferrule connection surface by a distance of at least 0.1 micron. The recess may be formed by differential polishing of the non-polymeric ferrule and endfaces of the optical fibers. Alternatively, a layer of spacer material may be deposited over the multi-fiber ferrule connection surface. An antireflection coating is deposited over the ferrule connection surface and ends of the recessed fibers.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: September 5, 2023
    Assignee: Ningo Litas Optical Technologies Co. Ltd.
    Inventor: Benjamin B. Jian
  • Publication number: 20220269011
    Abstract: A ferrule mold having a reverse-image of a through-hole array for optical fibers is formed. A non-polymeric ferrule material is deposited in the reverse-image mold, followed by removing the mold to create a multi-fiber connector ferrule having at least two fiber through-holes. An optical fiber is inserted in each through-hole until each fiber endface is positioned approximately even with a connection surface of the ferrule. A fiber recess for each of the optical fibers is formed such that each fiber is recessed from the multi-fiber ferrule connection surface by a distance of at least 0.1 micron. The recess may be formed by differential polishing of the non-polymeric ferrule and endfaces of the optical fibers. Alternatively, a layer of spacer material may be deposited over the multi-fiber ferrule connection surface. An antireflection coating is deposited over the ends of the recessed fibers.
    Type: Application
    Filed: May 16, 2022
    Publication date: August 25, 2022
    Inventor: Benjamin B. JIAN
  • Patent number: 11333835
    Abstract: A ferrule mold having a reverse-image of a through-hole array for optical fibers is formed. A non-polymeric ferrule material is deposited in the reverse-image mold, followed by removing the mold to create a multi-fiber connector ferrule having at least two fiber through-holes. An optical fiber is inserted in each through-hole until each fiber endface is positioned approximately even with a connection surface of the ferrule. A fiber recess for each of the optical fibers is formed such that each fiber is recessed from the multi-fiber ferrule connection surface by a distance of at least 0.1 micron. The recess may be formed by differential polishing of the non-polymeric ferrule and endfaces of the optical fibers. Alternatively, a layer of spacer material may be deposited over the multi-fiber ferrule connection surface. An antireflection coating is deposited over the ends of the recessed fibers.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: May 17, 2022
    Assignee: Arrayed Fiberoptics Corporation
    Inventor: Benjamin B. Jian
  • Publication number: 20210231883
    Abstract: A ferrule mold having a reverse-image of a through-hole array for optical fibers is formed. A non-polymeric ferrule material is deposited in the reverse-image mold, followed by removing the mold to create a multi-fiber connector ferrule having at least two fiber through-holes. An optical fiber is inserted in each through-hole until each fiber endface is positioned approximately even with a connection surface of the ferrule. A fiber recess for each of the optical fibers is formed such that each fiber is recessed from the multi-fiber ferrule connection surface by a distance of at least 0.1 micron. The recess may be formed by differential polishing of the non-polymeric ferrule and endfaces of the optical fibers. Alternatively, a layer of spacer material may be deposited over the multi-fiber ferrule connection surface. An antireflection coating is deposited over the ferrule connection surface and ends of the recessed fibers.
    Type: Application
    Filed: April 16, 2021
    Publication date: July 29, 2021
    Inventor: Benjamin B. JIAN
  • Patent number: 10983288
    Abstract: A ferrule mold having a reverse-image of a through-hole array for optical fibers is formed. A non-polymeric ferrule material is deposited in the reverse-image mold, followed by removing the mold to create a multi-fiber connector ferrule having at least two fiber through-holes. An optical fiber is inserted in each through-hole until each fiber endface is positioned approximately even with a connection surface of the ferrule. A fiber recess for each of the optical fibers is formed such that each fiber is recessed from the multi-fiber ferrule connection surface by a distance of at least 0.1 micron. The recess may be formed by differential polishing of the non-polymeric ferrule and endfaces of the optical fibers. Alternatively, a layer of spacer material may be deposited over the multi-fiber ferrule connection surface. An antireflection coating is deposited over the ferrule connection surface and ends of the recessed fibers.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: April 20, 2021
    Assignee: Arrayed Fiberoptics Corporation
    Inventor: Benjamin B. Jian
  • Publication number: 20210011227
    Abstract: A ferrule mold having a reverse-image of a through-hole array for optical fibers is formed. A non-polymeric ferrule material is deposited in the reverse-image mold, followed by removing the mold to create a multi-fiber connector ferrule having at least two fiber through-holes. An optical fiber is inserted in each through-hole until each fiber endface is positioned approximately even with a connection surface of the ferrule. A fiber recess for each of the optical fibers is formed such that each fiber is recessed from the multi-fiber ferrule connection surface by a distance of at least 0.1 micron. The recess may be formed by differential polishing of the non-polymeric ferrule and endfaces of the optical fibers. Alternatively, a layer of spacer material may be deposited over the multi-fiber ferrule connection surface. An antireflection coating is deposited over the ends of the recessed fibers.
    Type: Application
    Filed: December 17, 2019
    Publication date: January 14, 2021
    Inventor: Benjamin B. JIAN
  • Publication number: 20200049901
    Abstract: A ferrule mold having a reverse-image of a through-hole array for optical fibers is formed. A non-polymeric ferrule material is deposited in the reverse-image mold, followed by removing the mold to create a multi-fiber connector ferrule having at least two fiber through-holes. An optical fiber is inserted in each through-hole until each fiber endface is positioned approximately even with a connection surface of the ferrule. A fiber recess for each of the optical fibers is formed such that each fiber is recessed from the multi-fiber ferrule connection surface by a distance of at least 0.1 micron. The recess may be formed by differential polishing of the non-polymeric ferrule and endfaces of the optical fibers. Alternatively, a layer of spacer material may be deposited over the multi-fiber ferrule connection surface. An antireflection coating is deposited over the ferrule connection surface and ends of the recessed fibers.
    Type: Application
    Filed: October 17, 2019
    Publication date: February 13, 2020
    Inventor: Benjamin B. JIAN
  • Patent number: 10545294
    Abstract: A ferrule mold having a reverse-image of a through-hole array for optical fibers is formed. A non-polymeric ferrule material is deposited in the reverse-image mold, followed by removing the mold to create a multi-fiber connector ferrule having at least two fiber through-holes. An optical fiber is inserted in each through-hole until each fiber endface is positioned approximately even with a connection surface of the ferrule. A fiber recess for each of the optical fibers is formed such that each fiber is recessed from the multi-fiber ferrule connection surface by a distance of at least 0.1 micron. The recess may be formed by differential polishing of the non-polymeric ferrule and endfaces of the optical fibers. Alternatively, a layer of spacer material may be deposited over the multi-fiber ferrule connection surface. An antireflection coating is deposited over the ferrule connection surface and ends of the recessed fibers.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: January 28, 2020
    Assignee: ARRAYED FIBEROPTICS CORPORATION
    Inventor: Benjamin B. Jian
  • Publication number: 20170248761
    Abstract: An optical fiber connector component that is useful for joining and connecting fiber cables, particularly in the field. A joinder component includes a fiber ferrule coaxially housing a short section of optical fiber with a rearward flanged sleeve that allows the fiber to extend through it. Rearwardly the flanged sleeve extends into a connector body where a fusion splice of the fiber section to the main fiber cable is hidden. Forwardly, the fiber facet and ferrule have anti-reflection coatings and are configured so that the fiber has an output facet recessed slightly relative to the forward polished end surface of the ferrule so that when two ferrule end surfaces are brought together in an adapter, respective fiber facets are slightly spaced apart thereby avoiding wear on fiber facets due to physical contact, yet having good optical communication.
    Type: Application
    Filed: May 15, 2017
    Publication date: August 31, 2017
    Inventor: Benjamin B. Jian
  • Publication number: 20130163930
    Abstract: An optical fiber connector component that is useful for joining and connecting fiber cables, particularly in the field. A joinder component includes a fiber ferrule coaxially housing a short section of optical fiber with a rearward flanged sleeve that allows the fiber to extend through it. Rearwardly the flanged sleeve extends into a connector body where a fusion splice of the fiber section to the main fiber cable is hidden. Forwardly, the fiber facet and ferrule have anti-reflection coatings and are configured so that the fiber has an output facet recessed slightly relative to the forward polished end surface of the ferrule so that when two ferrule end surfaces are brought together in an adapter, respective fiber facets are slightly spaced apart thereby avoiding wear on fiber facets due to physical contact, yet having good optical communication.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 27, 2013
    Applicant: Arrayed Fiberoptics Corporation
    Inventor: Benjamin B. Jian
  • Patent number: 6981804
    Abstract: Integrated optical devices in which one or more optical fibers are vertically integrated with other optical components in a multilayer arrangement. Optical components include lenses, etalons that may be passive or actuable, WDM filters and beamsplitters, for example. One vertically integrated optical device comprises a fiber socket layer comprising a plurality of sockets including a first socket and second socket arranged proximate to each other, and a lens that has a central axis offset from the cores of the first and second fibers. Optical devices include filters, variable optical attenuators, and switches, for example. A component layer may comprise a spacer layer that provides a predetermined opening that is hermetically sealed to protect sensitive components, such as MEMS devices. Also, a method of forming a socket layer using a two-sided etching process is disclosed. Furthermore, an integrated laser device is disclosed that includes a laser layer.
    Type: Grant
    Filed: May 15, 2002
    Date of Patent: January 3, 2006
    Assignee: Arrayed Fiberoptics Corporation
    Inventor: Benjamin B. Jian
  • Patent number: 6527455
    Abstract: A multilayer optical fiber coupler for coupling optical radiation between an optical device and an optical fiber, including a first layer that has a fiber socket formed by photolithographic masking and etching to extend through said first layer, and a second layer bonded to the first layer. The first layer may comprise substantially single-crystal silicon. An optical fiber is inserted into the fiber socket to align the optical fiber precisely within the fiber socket. In one embodiment the optical fiber is a single mode fiber, and an optical focusing element formed on the second layer is aligned with the core of the single mode fiber. The second layer may comprise glass having an index of refraction that approximately matches the index of the optical fiber, and an optical epoxy is used to affix the optical fiber into the fiber socket and fill the gaps between the end face of the fiber and the second layer.
    Type: Grant
    Filed: November 26, 2001
    Date of Patent: March 4, 2003
    Inventor: Benjamin B. Jian
  • Publication number: 20030002809
    Abstract: Integrated optical devices in which one or more optical fibers are vertically integrated with other optical components in a multilayer arrangement. Optical components include lenses, etalons that may be passive or actuable, WDM filters and beamsplitters, for example. One vertically integrated optical device comprises a fiber socket layer comprising a plurality of sockets including a first socket and second socket arranged proximate to each other, and a lens that has a central axis offset from the cores of the first and second fibers. Optical devices include filters, variable optical attenuators, and switches, for example. A component layer may comprise a spacer layer that provides a predetermined opening that is hermetically sealed to protect sensitive components, such as MEMS devices. Also, a method of forming a socket layer using a two-sided etching process is disclosed. Furthermore, an integrated laser device is disclosed that includes a laser layer.
    Type: Application
    Filed: May 15, 2002
    Publication date: January 2, 2003
    Inventor: Benjamin B. Jian
  • Publication number: 20020054737
    Abstract: A multilayer optical fiber coupler for coupling optical radiation between an optical device and an optical fiber, including a first layer that has a fiber socket formed by photolithographic masking and etching to extend through said first layer, and a second layer bonded to the first layer. The first layer may comprise substantially single-crystal silicon. An optical fiber is inserted into the fiber socket to align the optical fiber precisely within the fiber socket. In one embodiment the optical fiber is a single mode fiber, and an optical focusing element formed on the second layer is aligned with the core of the single mode fiber. The second layer may comprise glass having an index of refraction that approximately matches the index of the optical fiber, and an optical epoxy is used to affix the optical fiber into the fiber socket and fill the gaps between the end face of the fiber and the second layer.
    Type: Application
    Filed: November 26, 2001
    Publication date: May 9, 2002
    Inventor: Benjamin B. Jian