Patents by Inventor Benjamin E. Funk

Benjamin E. Funk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200141727
    Abstract: Methods and systems are described for determining the elevation of tracked personnel or assets (trackees) that can take input from mounted sensors on each trackee (including barometric, inertial, magnetometer, radio frequency ranging and signal strength, light and GPS sensors), external constraints (including ranging constraints, feature constraints, and user corrections), and terrain elevation data. An example implementation of this method for determining elevation of persons on foot is described. But this method is not limited to computing elevation of personnel or to on foot movements.
    Type: Application
    Filed: August 28, 2019
    Publication date: May 7, 2020
    Inventors: John KARVOUNIS, Jared NAPORA, Benjamin E. FUNK, Daniel HAKIM, Christopher GILES, Carole TEOLIS
  • Patent number: 10627230
    Abstract: Methods and systems are described for determining the elevation of tracked personnel or assets (trackees) that can take input from mounted sensors on each trackee (including barometric, inertial, magnetometer, radio frequency ranging and signal strength, light and GPS sensors), external constraints (including ranging constraints, feature constraints, and user corrections), and terrain elevation data. An example implementation of this method for determining elevation of persons on foot is described. But this method is not limited to computing elevation of personnel or to on foot movements.
    Type: Grant
    Filed: August 28, 2019
    Date of Patent: April 21, 2020
    Assignee: TRX SYSTEMS, INC.
    Inventors: John Karvounis, Jared Napora, Benjamin E. Funk, Daniel Hakim, Christopher Giles, Carole Teolis
  • Patent number: 10612921
    Abstract: Methods and systems are described for determining the elevation of tracked personnel or assets (trackees) that can take input from mounted sensors on each trackee (including barometric, inertial, magnetometer, radio frequency ranging and signal strength, light and GPS sensors), external constraints (including ranging constraints, feature constraints, and user corrections), and terrain elevation data. An example implementation of this method for determining elevation of persons on foot is described. But this method is not limited to computing elevation of personnel or to on foot movements.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: April 7, 2020
    Assignee: TRX SYSTEMS, INC.
    Inventors: John Karvounis, Jared Napora, Benjamin E. Funk, Daniel Hakim, Christopher Giles, Carole Teolis
  • Patent number: 10598487
    Abstract: Methods and systems are described for determining the elevation of tracked personnel or assets (trackees) that can take input from mounted sensors on each trackee (including barometric, inertial, magnetometer, radio frequency ranging and signal strength, light and GPS sensors), external constraints (including ranging constraints, feature constraints, and user corrections), and terrain elevation data. An example implementation of this method for determining elevation of persons on foot is described. But this method is not limited to computing elevation of personnel or to on foot movements.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: March 24, 2020
    Assignee: TRX SYSTEMS, INC.
    Inventors: John Karvounis, Jared Napora, Benjamin E. Funk, Daniel Hakim, Christopher Giles, Carole Teolis
  • Publication number: 20190390956
    Abstract: Methods and systems are described for determining the elevation of tracked personnel or assets (trackees) that can take input from mounted sensors on each trackee (including barometric, inertial, magnetometer, radio frequency ranging and signal strength, light and GPS sensors), external constraints (including ranging constraints, feature constraints, and user corrections), and terrain elevation data. An example implementation of this method for determining elevation of persons on foot is described. But this method is not limited to computing elevation of personnel or to on foot movements.
    Type: Application
    Filed: August 29, 2019
    Publication date: December 26, 2019
    Inventors: John KARVOUNIS, Jared NAPORA, Benjamin E. FUNK, Daniel HAKIM, Christopher GILES, Carole TEOLIS
  • Publication number: 20190383606
    Abstract: Methods and systems are described for determining the elevation of tracked personnel or assets (trackees) that can take input from mounted sensors on each trackee (including barometric, inertial, magnetometer, radio frequency ranging and signal strength, light and GPS sensors), external constraints (including ranging constraints, feature constraints, and user corrections), and terrain elevation data. An example implementation of this method for determining elevation of persons on foot is described. But this method is not limited to computing elevation of personnel or to on foot movements.
    Type: Application
    Filed: August 29, 2019
    Publication date: December 19, 2019
    Inventors: John KARVOUNIS, Jared NAPORA, Benjamin E. FUNK, Daniel HAKIM, Christopher GILES, Carole TEOLIS
  • Patent number: 10401168
    Abstract: Methods and systems are described for determining the elevation of tracked personnel or assets (trackees) that can take input from mounted sensors on each trackee (including barometric, inertial, magnetometer, radio frequency ranging and signal strength, light and GPS sensors), external constraints (including ranging constraints, feature constraints, and user corrections), and terrain elevation data. An example implementation of this method for determining elevation of persons on foot is described. But this method is not limited to computing elevation of personnel or to on foot movements.
    Type: Grant
    Filed: May 10, 2017
    Date of Patent: September 3, 2019
    Assignee: TRX SYSTEMS, INC.
    Inventors: John Karvounis, Jared Napora, Benjamin E. Funk, Dan Hakim, Christopher Giles, Carole Teolis
  • Patent number: 10393543
    Abstract: Methods for calibrating a body-worn magnetic sensor by spinning the magnetic sensor 360 degrees to capture magnetic data; if the spin failed to produce a circle contained in an x-y plane fit a sphere to the captured data; determining offsets based on the center of the sphere; and removing the offsets that are in the z-direction. Computing a magnetic heading reliability of a magnetic sensor by determining an orientation of the sensor at one location; transforming the orientation between two reference frames; measuring a first vector associated with the magnetic field of Earth at the location; processing the first vector to generate a virtual vector when a second location is detected; measuring a second vector associated with the magnetic field of Earth at the second location; and calculating the magnetic heading reliability at the second location based on a comparison of the virtual vector and the second vector.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: August 27, 2019
    Assignee: TRX SYSTEMS, INC.
    Inventors: Benjamin E. Funk, Dan Hakim, John Karvounis, Travis Young, Carole Teolis
  • Patent number: 10393542
    Abstract: Methods for calibrating a body-worn magnetic sensor by spinning the magnetic sensor 360 degrees to capture magnetic data; if the spin failed to produce a circle contained in an x-y plane fit a sphere to the captured data; determining offsets based on the center of the sphere; and removing the offsets that are in the z-direction. Computing a magnetic heading reliability of a magnetic sensor by determining an orientation of the sensor at one location; transforming the orientation between two reference frames; measuring a first vector associated with the magnetic field of Earth at the location; processing the first vector to generate a virtual vector when a second location is detected; measuring a second vector associated with the magnetic field of Earth at the second location; and calculating the magnetic heading reliability at the second location based on a comparison of the virtual vector and the second vector.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: August 27, 2019
    Assignee: TRX SYSTEMS, INC.
    Inventors: Benjamin E. Funk, Dan Hakim, John Karvounis, Travis Young, Carole Teolis
  • Patent number: 10012502
    Abstract: Methods and systems are described for determining the elevation of tracked personnel or assets (trackees) that can take input from mounted sensors on each trackee (including barometric, inertial, magnetometer, radio frequency ranging and signal strength, light and GPS sensors), external constraints (including ranging constraints, feature constraints, and user corrections), and terrain elevation data. An example implementation of this method for determining elevation of persons on foot is described. But this method is not limited to computing elevation of personnel or to on foot movements.
    Type: Grant
    Filed: May 10, 2017
    Date of Patent: July 3, 2018
    Assignee: TRX SYSTEMS, INC.
    Inventors: John Karvounis, Jared Napora, Benjamin E. Funk, Dan Hakim, Christopher Giles, Carole Teolis
  • Patent number: 9823068
    Abstract: A method for determining an environmental pressure change affecting a pressure sensor within a portable device to determine an elevation of the portable device is disclosed. The method involves estimating a location of the mobile device, estimating an atmospheric pressure associated with the mobile device at a server based on data indicative of atmospheric pressure received from the mobile device, and generating the elevation of the mobile device based on the atmospheric pressure associated with the mobile device and reference data indicative of an absolute elevation reference. The absolute elevation determined may be based on the estimated location of the mobile device and elevation data obtained from a reference map.
    Type: Grant
    Filed: February 10, 2016
    Date of Patent: November 21, 2017
    Assignee: TRX Systems, Inc.
    Inventors: John Karvounis, Jared Napora, Dan Hakim, Carole Teolis, John Riley Miller, Benjamin E. Funk
  • Publication number: 20170328718
    Abstract: Methods and systems are described for determining the elevation of tracked personnel or assets (trackees) that can take input from mounted sensors on each trackee (including barometric, inertial, magnetometer, radio frequency ranging and signal strength, light and GPS sensors), external constraints (including ranging constraints, feature constraints, and user corrections), and terrain elevation data. An example implementation of this method for determining elevation of persons on foot is described. But this method is not limited to computing elevation of personnel or to on foot movements.
    Type: Application
    Filed: May 10, 2017
    Publication date: November 16, 2017
    Inventors: John KARVOUNIS, Jared NAPORA, Benjamin E. FUNK, Dan HAKIM, Christopher GILES, Carole TEOLIS
  • Publication number: 20170307404
    Abstract: Methods for calibrating a body-worn magnetic sensor by spinning the magnetic sensor 360 degrees to capture magnetic data; if the spin failed to produce a circle contained in an x-y plane fit a sphere to the captured data; determining offsets based on the center of the sphere; and removing the offsets that are in the z-direction. Computing a magnetic heading reliability of a magnetic sensor by determining an orientation of the sensor at one location; transforming the orientation between two reference frames; measuring a first vector associated with the magnetic field of Earth at the location; processing the first vector to generate a virtual vector when a second location is detected; measuring a second vector associated with the magnetic field of Earth at the second location; and calculating the magnetic heading reliability at the second location based on a comparison of the virtual vector and the second vector.
    Type: Application
    Filed: July 13, 2017
    Publication date: October 26, 2017
    Inventors: Benjamin E. Funk, Dan Hakim, John Karvounis, Travis Young, Carole Teolis
  • Publication number: 20170307403
    Abstract: Methods for calibrating a body-worn magnetic sensor by spinning the magnetic sensor 360 degrees to capture magnetic data; if the spin failed to produce a circle contained in an x-y plane fit a sphere to the captured data; determining offsets based on the center of the sphere; and removing the offsets that are in the z-direction. Computing a magnetic heading reliability of a magnetic sensor by determining an orientation of the sensor at one location; transforming the orientation between two reference frames; measuring a first vector associated with the magnetic field of Earth at the location; processing the first vector to generate a virtual vector when a second location is detected; measuring a second vector associated with the magnetic field of Earth at the second location; and calculating the magnetic heading reliability at the second location based on a comparison of the virtual vector and the second vector.
    Type: Application
    Filed: July 11, 2017
    Publication date: October 26, 2017
    Inventors: Benjamin E. Funk, Dan Hakim, John Karvounis, Travis Young, Carole Teolis
  • Publication number: 20170241780
    Abstract: Methods and systems are described for determining the elevation of tracked personnel or assets (trackees) that can take input from mounted sensors on each trackee (including barometric, inertial, magnetometer, radio frequency ranging and signal strength, light and GPS sensors), external constraints (including ranging constraints, feature constraints, and user corrections), and terrain elevation data. An example implementation of this method for determining elevation of persons on foot is described. But this method is not limited to computing elevation of personnel or to on foot movements.
    Type: Application
    Filed: May 10, 2017
    Publication date: August 24, 2017
    Inventors: John KARVOUNIS, Jared NAPORA, Benjamin E. FUNK, Dan HAKIM, Christopher GILES, Carole TEOLIS
  • Patent number: 9739635
    Abstract: Methods for calibrating a body-worn magnetic sensor by spinning the magnetic sensor 360 degrees to capture magnetic data; if the spin failed to produce a circle contained in an x-y plane fit a sphere to the captured data; determining offsets based on the center of the sphere; and removing the offsets that are in the z-direction. Computing a magnetic heading reliability of a magnetic sensor by determining an orientation of the sensor at one location; transforming the orientation between two reference frames; measuring a first vector associated with the magnetic field of Earth at the location; processing the first vector to generate a virtual vector when a second location is detected; measuring a second vector associated with the magnetic field of Earth at the second location; and calculating the magnetic heading reliability at the second location based on a comparison of the virtual vector and the second vector.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: August 22, 2017
    Assignee: TRX Systems, Inc.
    Inventors: Benjamin E. Funk, Dan Hakim, John Karvounis, Travis Young, Carole Teolis
  • Patent number: 9671224
    Abstract: Methods and systems are described for determining the elevation of tracked personnel or assets (trackees) that can take input from mounted sensors on each trackee (including barometric, inertial, magnetometer, radio frequency ranging and signal strength, light and GPS sensors), external constraints (including ranging constraints, feature constraints, and user corrections), and terrain elevation data. An example implementation of this method for determining elevation of persons on foot is described. But this method is not limited to computing elevation of personnel or to on foot movements.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: June 6, 2017
    Assignee: TRX Systems, Inc.
    Inventors: John Karvounis, Jared Napora, Benjamin E. Funk, Dan Hakim, Christopher Giles, Carole Teolis
  • Patent number: 9664521
    Abstract: A system and method for recognizing features for location correction in Simultaneous Localization And Mapping operations, thus facilitating longer duration navigation, is provided. The system may detect features from magnetic, inertial, GPS, light sensors, and/or other sensors that can be associated with a location and recognized when revisited. Feature detection may be implemented on a generally portable tracking system, which may facilitate the use of higher sample rate data for more precise localization of features, improved tracking when network communications are unavailable, and improved ability of the tracking system to act as a smart standalone positioning system to provide rich input to higher level navigation algorithms/systems. The system may detect a transition from structured (such as indoors, in caves, etc.) to unstructured (such as outdoor) environments and from pedestrian motion to travel in a vehicle.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: May 30, 2017
    Assignee: TRX Systems, Inc.
    Inventors: Benjamin E. Funk, Jared Napora, Kamiar Kordari, Ruchika Verma, Amrit Bandyopadhyay, Carole Teolis
  • Patent number: 9448072
    Abstract: A system and method for locating, tracking, and/or monitoring the status of personnel and/or assets (collectively “trackees”), both indoors and outdoors, is provided. Tracking data obtained from any number of sources utilizing any number of tracking methods (e.g., inertial navigation and signal-based methods) may be provided as input to a mapping application. The mapping application may generate position estimates for trackees using a suite of mapping tools to make corrections to the tracking data. The mapping application may further use information from building data, when available, to enhance position estimates. Indoor tracking methods including, for example, sensor fusion methods, map matching methods, and map building methods may be implemented to take tracking data from one or more trackees and compute a more accurate tracking estimate for each trackee.
    Type: Grant
    Filed: August 6, 2008
    Date of Patent: September 20, 2016
    Assignee: TRX Systems, Inc.
    Inventors: Amrit Bandyopadhyay, Daniel Hakim, Benjamin E. Funk, Eric Asher Kohn, Carole A. Teolis, Gilmer Blankenship
  • Publication number: 20160216117
    Abstract: A system and method for locating, tracking, and/or monitoring the status of personnel and/or assets (collectively “trackees”), both indoors and outdoors, is provided. Tracking data obtained from any number of sources utilizing any number of tracking methods (e.g., inertial navigation and signal-based methods) may be provided as input to a mapping application. The mapping application may generate position estimates for trackees using a suite of mapping tools to make corrections to the tracking data. The mapping application may further use information from building data, when available, to enhance position estimates. Indoor tracking methods including, for example, sensor fusion methods, map matching methods, and map building methods may be implemented to take tracking data from one or more trackees and compute a more accurate tracking estimate for each trackee.
    Type: Application
    Filed: August 6, 2008
    Publication date: July 28, 2016
    Inventors: AMRIT BANDYOPADHYAY, Daniel Hakim, Benjamin E. Funk, Eric Asher Kohn, Carole A. Teolis, Gilmer Blankenship