Patents by Inventor Benjamin Hagemann

Benjamin Hagemann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110252768
    Abstract: A method for the self-diagnosis of an exhaust gas probe (20). The exhaust gas probe (20) has at least one heating element (26). The method includes a modeled heat output PH is determined for the heating element (26) by means of a computer program comparing parameters of the gas stream with a measured heat output, and determining, when the parameters of the gas stream exceeds the measured heat output by more than a defined tolerance limit, that one of the exhaust gas probe (20) is defective, and an exhaust gas section (17) in which the exhaust gas probe (20) is installed is faulty.
    Type: Application
    Filed: April 19, 2011
    Publication date: October 20, 2011
    Applicant: ROBERT BOSCH GMBH
    Inventors: Thomas Baumann, Enno Baars, Johannes Grabis, Benjamin Hagemann, Bernhard Kamp
  • Publication number: 20110177434
    Abstract: A method for production of a solid oxide fuel cell (SOFC) (1), having an electrolyte body (10) with a tubular structure, wherein at least one internal electrode (11) and one external electrode (12) are applied to the tubular electrolyte body, with the method having at least the following steps: provision of an injection molding core (13) on which at least one interconnector material (14) and the internal electrode (11) are mounted, arrangement of the injection molding core (13) in an injection mold (25a, 25b), injection molding of an electrolyte compound (10a) in order to form the electrolyte body (10), and removal of the injection molding core (13) in the form of a casting process with a lost core.
    Type: Application
    Filed: January 19, 2011
    Publication date: July 21, 2011
    Applicant: ROBERT BOSCH GMBH
    Inventors: Harald Maus, Uwe Glanz, Raphaelle Satet, Gudrun Oehler, Leonore Schwegler, Benjamin Hagemann, Alexander Bluthard, Erhard Hirth
  • Publication number: 20110162436
    Abstract: A sensor element having a layered construction and configured to detect a physical property of a gas or a liquid includes a functional component situated in the interior, which functional component is connected electrically to a conductor element, which conductor element extends up to the outer surface or up into the surroundings of the sensor element. The sensor element has at least one sealing element which adjoins the functional component and/or the conductor element. The conductor element and the at least one sealing element are configured to be gas-tight at least regionally in the interior of the sensor element and are situated in such a way that the functional component is separated gas-tight from the surroundings of the sensor element.
    Type: Application
    Filed: April 24, 2009
    Publication date: July 7, 2011
    Inventors: Thomas Wahl, Georg Rixecker, Steffen Polster, Uwe Glanz, Gudrun Oehler, Ulrich Eisele, Benjamin Hagemann, Alexander Bluthard, Frank Schnell, Jochen Rager, Petra Kuschel
  • Patent number: 7368853
    Abstract: The invention relates to a piezoelectric motor comprising a piezoelectric component that is connected to a resonator and a two-dimensional resonator that interacts with a movable. element, the resonator having principal surfaces that are parallel to each other and that are also identical in shape and size. The invention further relates to methods for producing such piezoelectric motors, wherein the resonators are manufactured by cutting a profiled, extruded bar into lengths or by cutting, preferably by punching, from sheet metal having constant thickness. Finally, this invention relates to a method for exciting such a piezoelectric motor, wherein the excitation frequency or frequencies is/are generated by the control electronics as a function of time in response to the respective peak current and/or in response to the respective phase minimum between current and voltage and/or in response to the change in phase.
    Type: Grant
    Filed: October 22, 2004
    Date of Patent: May 6, 2008
    Assignee: Elliptec Resonant Actuator Aktiengesellschaft
    Inventors: Bjoern B. Magnussen, Peter C. Varadi, Kai Wolf, Benjamin Hagemann, Dieter A. Schuler, Erick M. Davidson
  • Patent number: 7342347
    Abstract: The present invention relates to a drive system comprising at least one motor with at least one vibration generator each as well as at least one resonator each and a device driven by said motor, wherein the resonator comprises a contact area that cooperates with the surface of the device in order to drive said device.
    Type: Grant
    Filed: March 19, 2004
    Date of Patent: March 11, 2008
    Assignee: Elliptec Resonant Actuator Aktiengesellschaft
    Inventors: Bjoern Magnussen, Benjamin Hagemann, Dieter Schuler, Erick M. Davidson, Peter Varadi
  • Patent number: 7173362
    Abstract: A single piezoelectric is excited at a first frequency to cause two vibration modes in a resonator producing a first elliptical motion in a first direction at a selected contacting portion of the resonator that is placed in frictional engagement with a driven element to move the driven element in a first direction. A second frequency excites the same piezoelectric to cause two vibration modes of the resonator producing a second elliptical motion in a second direction at the selected contacting portion to move the driven element in a second direction. The piezoelectric is preloaded in compression by the resonator. Walls of the resonator are stressed past their yield point to maintain the preload. Specially shaped ends on the piezoelectric help preloading. The piezoelectric can send or receive vibratory signals through the driven element to or from sensors to determine the position of the driven element relative to the piezoelectric element or resonator.
    Type: Grant
    Filed: September 8, 2004
    Date of Patent: February 6, 2007
    Inventors: Bjoern Magnussen, Peter Varadi, Benjamin Hagemann, Steven Schofield, Erick M. Davidson
  • Publication number: 20050127789
    Abstract: A piezoelectric motor has a piezoelectric element that is connected to a resonator, and a driven element that interacts with the piezoelectric motor. During the service life of the motor and resonator at least one operating state variable changes, and the change in operating variable is used to help avoid failure of the piezoelectric motor.
    Type: Application
    Filed: October 15, 2004
    Publication date: June 16, 2005
    Inventors: Bjoern Magnussen, Peter Varadi, Kai Wolf, Benjamin Hagemann, Dieter Schuler, Erick Davidson
  • Publication number: 20050127790
    Abstract: The invention relates to a piezoelectric motor comprising a piezoelectric component that is connected to a resonator and a two-dimensional resonator that interacts with a movable element, the resonator having principal surfaces that are parallel to each other and that are also identical in shape and size. The invention further relates to methods for producing such piezoelectric motors, wherein the resonators are manufactured by cutting a profiled, extruded bar into lengths or by cutting, preferably by punching, from sheet metal having constant thickness. Finally, this invention relates to a method for exciting such a piezoelectric motor, wherein the excitation frequency or frequencies is/are generated by the control electronics as a function of time in response to the respective peak current and/or in response to the respective phase minimum between current and voltage and/or in response to the change in phase.
    Type: Application
    Filed: October 22, 2004
    Publication date: June 16, 2005
    Inventors: Bjoern Magnussen, Peter Varadi, Kai Wolf, Benjamin Hagemann, Dieter Schuler, Erick Davidson
  • Patent number: 6870304
    Abstract: A single piezoelectric is excited at a first frequency to cause two vibration modes in a resonator producing a first elliptical motion in a first direction at a selected contacting portion of the resonator that is placed in frictional engagement with a driven element to move the driven element in a first direction. A second frequency excites the same piezoelectric to cause two vibration modes of the resonator producing a second elliptical motion in a second direction at the selected contacting portion to move the driven element in a second direction. The piezoelectric is preloaded in compression by the resonator. Walls of the resonator are stressed past their yield point to maintain the preload. Specially shaped ends on the piezoelectric help preloading. The piezoelectric can send or receive vibratory signals through the driven element to or from sensors to determine the position of the driven element relative to the piezoelectric element or resonator.
    Type: Grant
    Filed: March 8, 2001
    Date of Patent: March 22, 2005
    Assignee: Elliptec Resonant Actuator AG
    Inventors: Bjoern Magnussen, Peter Varadi, Benjamin Hagemann, Steven Schofield, Erick M. Davidson
  • Publication number: 20050023933
    Abstract: A single piezoelectric is excited at a first frequency to cause two vibration modes in a resonator producing a first elliptical motion in a first direction at a selected contacting portion of the resonator that is placed in frictional engagement with a driven element to move the driven element in a first direction. A second frequency excites the same piezoelectric to cause two vibration modes of the resonator producing a second elliptical motion in a second direction at the selected contacting portion to move the driven element in a second direction. The piezoelectric is preloaded in compression by the resonator. Walls of the resonator are stressed past their yield point to maintain the preload. Specially shaped ends on the piezoelectric help preloading. The piezoelectric can send or receive vibratory signals through the driven element to or from sensors to determine the position of the driven element relative to the piezoelectric element or resonator.
    Type: Application
    Filed: September 8, 2004
    Publication date: February 3, 2005
    Inventors: Bjoern Magnussen, Peter Varadi, Benjamin Hagemann, Steven Schofield, Erick Davidson
  • Publication number: 20040256954
    Abstract: The present invention relates to a drive system comprising at least one motor with at least one vibration generator each as well as at least one resonator each and a device driven by said motor, wherein the resonator comprises a contact area that cooperates with the surface of the device in order to drive said device.
    Type: Application
    Filed: March 19, 2004
    Publication date: December 23, 2004
    Inventors: Bjoern Magnussen, Benjamin Hagemann, Dieter Schuler, Erick M. Davidson, Peter Varadi
  • Patent number: 6825592
    Abstract: A single piezoelectric is excited at a first frequency to cause two vibration modes in a resonator producing a first elliptical motion in a first direction at a selected contacting portion of the resonator that is placed in frictional engagement with a driven element to move the driven element in a first direction. A second frequency excites the same piezoelectric to cause two vibration modes of the resonator producing a second elliptical motion in a second direction at the selected contacting portion to move the driven element in a second direction. The piezoelectric is preloaded in compression by the resonator. Walls of the resonator are stressed past their yield point to maintain the preload. Specially shaped ends on the piezoelectric help preloading. The piezoelectric can send or receive vibratory signals through the driven element to or from sensors to determine the position of the driven element relative to the piezoelectric element or resonator.
    Type: Grant
    Filed: October 22, 2003
    Date of Patent: November 30, 2004
    Assignee: Elliptec Resonant Actuator AG
    Inventors: Bjoern Magnussen, Peter Varadi, Benjamin Hagemann, Steven Schofield, Erick M. Davidson
  • Publication number: 20040095040
    Abstract: A single piezoelectric is excited at a first frequency to cause two vibration modes in a resonator producing a first elliptical motion in a first direction at a selected contacting portion of the resonator that is placed in frictional engagement with a driven element to move the driven element in a first direction. A second frequency excites the same piezoelectric to cause two vibration modes of the resonator producing a second elliptical motion in a second direction at the selected contacting portion to move the driven element in a second direction. The piezoelectric is preloaded in compression by the resonator. Walls of the resonator are stressed past their yield point to maintain the preload. Specially shaped ends on the piezoelectric help preloading. The piezoelectric can send or receive vibratory signals through the driven element to or from sensors to determine the position of the driven element relative to the piezoelectric element or resonator.
    Type: Application
    Filed: October 22, 2003
    Publication date: May 20, 2004
    Inventors: Bjoern Magnussen, Peter Varadi, Benjamin Hagemann, Steven Schofield, Erick M. Davidson
  • Patent number: 6690101
    Abstract: A single piezoelectric is excited at a first frequency to cause two vibration modes in a resonator producing a first elliptical motion in a first direction at a selected contacting portion of the resonator that is placed in frictional engagement with a driven element to move the driven element in a first direction. A second frequency excites the same piezoelectric to cause two vibration modes of the resonator producing a second elliptical motion in a second direction at the selected contacting portion to move the driven element in a second direction. The piezoelectric is preloaded in compression by the resonator. Walls of the resonator are stressed past their yield point to maintain the preload. Specially shaped ends on the piezoelectric help preloading. The piezoelectric can send or receive vibratory signals through the driven element to or from sensors to determine the position of the driven element relative to the piezoelectric element or resonator.
    Type: Grant
    Filed: March 8, 2001
    Date of Patent: February 10, 2004
    Assignee: Elliptec Resonant Actuator AG
    Inventors: Bjoern Magnussen, Peter Varadi, Benjamin Hagemann, Dieter Schuler
  • Patent number: 6664714
    Abstract: A single piezoelectric is excited at a first frequency to cause two vibration modes in a resonator producing a first elliptical motion in a first direction at a selected contacting portion of the resonator that is placed in frictional engagement with a driven element to move the driven element in a first direction. A second frequency excites the same piezoelectric to cause two vibration modes of the resonator producing a second elliptical motion in a second direction at the selected contacting portion to move the driven element in a second direction. The piezoelectric is preloaded in compression by the resonator. Walls of the resonator are stressed past their yield point to maintain the preload. Specially shaped ends on the piezoelectric help preloading. The piezoelectric can send or receive vibratory signals through the driven element to or from sensors to determine the position of the driven element relative to the piezoelectric element or resonator.
    Type: Grant
    Filed: March 8, 2001
    Date of Patent: December 16, 2003
    Assignee: Elliptec Resonant Actuator AG
    Inventors: Bjoern Magnussen, Peter Varadi, Benjamin Hagemann, Erick Davidson
  • Publication number: 20020050765
    Abstract: A single piezoelectric is excited at a first frequency to cause two vibration modes in a resonator producing a first elliptical motion in a first direction at a selected contacting portion of the resonator that is placed in frictional engagement with a driven element to move the driven element in a first direction. A second frequency excites the same piezoelectric to cause two vibration modes of the resonator producing a second elliptical motion in a second direction at the selected contacting portion to move the driven element in a second direction. The piezoelectric is preloaded in compression by the resonator. Walls of the resonator are stressed past their yield point to maintain the preload. Specially shaped ends on the piezoelectric help preloading. The piezoelectric can send or receive vibratory signals through the driven element to or from sensors to determine the position of the driven element relative to the piezoelectric element or resonator.
    Type: Application
    Filed: March 8, 2001
    Publication date: May 2, 2002
    Applicant: Siemens Aktiengessellschaft
    Inventors: Bjoern Magnussen, Peter Varadi, Benjamin Hagemann, Erick Davidson
  • Publication number: 20020038986
    Abstract: A single piezoelectric is excited at a first frequency to cause two vibration modes in a resonator producing a first elliptical motion in a first direction at a selected contacting portion of the resonator that is placed in frictional engagement with a driven element to move the driven element in a first direction. A second frequency excites the same piezoelectric to cause two vibration modes of the resonator producing a second elliptical motion in a second direction at the selected contacting portion to move the driven element in a second direction. The piezoelectric is preloaded in compression by the resonator. Walls of the resonator are stressed past their yield point to maintain the preload. Specially shaped ends on the piezoelectric help preloading. The piezoelectric can send or receive vibratory signals through the driven element to or from sensors to determine the position of the driven element relative to the piezoelectric element or resonator.
    Type: Application
    Filed: March 8, 2001
    Publication date: April 4, 2002
    Applicant: Siemens Aktiengessellschaft
    Inventors: Bjoern Magnussen, Peter Varadi, Benjamin Hagemann, Dieter Schuler
  • Publication number: 20020038987
    Abstract: A single piezoelectric is excited at a first frequency to cause two vibration modes in a resonator producing a first elliptical motion in a first direction at a selected contacting portion of the resonator that is placed in frictional engagement with a driven element to move the driven element in a first direction. A second frequency excites the same piezoelectric to cause two vibration modes of the resonator producing a second elliptical motion in a second direction at the selected contacting portion to move the driven element in a second direction. The piezoelectric is preloaded in compression by the resonator. Walls of the resonator are stressed past their yield point to maintain the preload. Specially shaped ends on the piezoelectric help preloading. The piezoelectric can send or receive vibratory signals through the driven element to or from sensors to determine the position of the driven element relative to the piezoelectric element or resonator.
    Type: Application
    Filed: March 8, 2001
    Publication date: April 4, 2002
    Applicant: Seimens Aktiengessellschaft
    Inventors: Bjoern Magnussen, Peter Varadi, Benjamin Hagemann, Steven Schofield