Patents by Inventor Benjamin Hindson

Benjamin Hindson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250146057
    Abstract: The present disclosure relates to materials and methods for spatially analyzing nucleic acids that have been fragmented with a transposase enzyme, alone or in combination with other types of analytes.
    Type: Application
    Filed: January 14, 2025
    Publication date: May 8, 2025
    Applicant: 10x Genomics, Inc.
    Inventors: Michael Schnall-Levin, Michael Ybarra Lucero, Tarjei Sigurd Mikkelsen, Patrik Stahl, Jonas Frisen, Maja Marklund, Enric Llorens Bobadilla, Eswar Prasad Ramachandran Iyer, Lucas Frenz, Augusto Manuel Tentori, Rajiv Bharadwaj, Linda Kvastad, Joakim Lundeberg, Eva Gracia Villacampa, Yifeng Yin, Zachary Bent, Jennifer Chew, Meghan L.F. Frey, Benjamin Hindson, Stephane Boutet, Katherine Pfeiffer
  • Publication number: 20250146047
    Abstract: This disclosure provides methods and compositions for sample processing, particularly for sequencing applications. Included within this disclosure are bead compositions, such as diverse libraries of beads attached to large numbers of oligonucleotides containing barcodes. Often, the beads provides herein are degradable. For example, they may contain disulfide bonds that are susceptible to reducing agents. The methods provided herein include methods of making libraries of barcoded beads as well as methods of combining the beads with a sample, such as by using a microfluidic device.
    Type: Application
    Filed: November 26, 2024
    Publication date: May 8, 2025
    Inventors: Benjamin Hindson, Christopher Hindson, Michael Schnall-Levin, Kevin Ness, Mirna Jarosz, Donald Masquelier, Serge Saxonov, Landon Merrill, Andrew Price, Paul Hardenbol, Yuan Li
  • Publication number: 20250137025
    Abstract: This disclosure provides methods for preparing a sequencing library including the steps of providing a template nucleic acid sequence, dNTPs, dUTP, a primer, a polymerase, a dUTP excising enzyme, and a plurality of beads including oligonucleotide adapter sequence segments; amplifying the template nucleic acid with the polymerase, dNTPs, dUTP and random hexamer to provide a complementary nucleic acid sequence including occasional dUTPs; and excising the incorporated dUTPs with the dUTP excising enzyme to provide nicks in the complementary nucleic acid sequence to provide a sequencing library.
    Type: Application
    Filed: November 7, 2024
    Publication date: May 1, 2025
    Inventors: Paul Hardenbol, Pranav Patel, Benjamin Hindson, Paul William Wyatt, Keith Bjornson, Indira Wu, Zahra Kamila Belhocine
  • Publication number: 20250129406
    Abstract: This disclosure provides microwell capsule array devices. The microwell capsule array devices are generally capable of performing one or more sample preparation operations. Such sample preparation operations may be used as a prelude to one more or more analysis operations. For example, a device of this disclosure can achieve physical partitioning and discrete mixing of samples with unique molecular identifiers within a single unit in preparation for various analysis operations. The device may be useful in a variety of applications and most notably nucleic-acid-based sequencing, detection and quantification of gene expression and single-cell analysis.
    Type: Application
    Filed: May 31, 2024
    Publication date: April 24, 2025
    Inventors: Benjamin Hindson, Serge Saxonov, Michael Schnall-Levin
  • Patent number: 12249402
    Abstract: The invention described herein solves challenges in providing a proficient, rapid and meaningful analysis of sequencing data. Methods and computer program products of the invention allow for a system to receive, analyze, and display sequencing data in real-time. The invention provides solutions to several difficulties encountered in assembling short sequencing-reads, and by doing so the invention improves the worth and significance of sequencing data.
    Type: Grant
    Filed: May 17, 2023
    Date of Patent: March 11, 2025
    Assignee: 10X GENOMICS, INC.
    Inventors: Michael Schnall-Levin, Mirna Jarosz, Serge Saxonov, Kevin Ness, Benjamin Hindson
  • Publication number: 20250066851
    Abstract: This disclosure provides methods and compositions for sample processing, particularly for sequencing applications. Included within this disclosure are bead compositions, such as diverse libraries of beads attached to large numbers of oligonucleotides containing barcodes. Often, the beads provides herein are degradable. For example, they may contain disulfide bonds that are susceptible to reducing agents. The methods provided herein include methods of making libraries of barcoded beads as well as methods of combining the beads with a sample, such as by using a microfluidic device.
    Type: Application
    Filed: November 12, 2024
    Publication date: February 27, 2025
    Inventors: Benjamin Hindson, Christopher Hindson, Michael Schnall-Levin, Kevin Ness, Mirna Jarosz, Serge Saxonov
  • Publication number: 20250059606
    Abstract: The present disclosure relates to methods, compositions and systems for haplotype phasing and copy number variation assays. Included within this disclosure are methods and systems for combining the barcode comprising beads with samples in multiple separate partitions, as well as methods of processing, sequencing and analyzing barcoded samples.
    Type: Application
    Filed: October 31, 2024
    Publication date: February 20, 2025
    Inventors: Michael Schnall-Levin, Mirna Jarosz, Christopher Hindson, Kevin Ness, Serge Saxonov, Benjamin Hindson, Xinying Zheng, Patrick Marks, John Stuelpnagel
  • Publication number: 20250043346
    Abstract: Provided herein are compositions, systems and methods for tagging molecular events, reactions, species, etc., but without the need for complex, highly diverse libraries of tagging molecules. Provided are tagging moieties that can have a smaller number, a few, or even a single original “tagging” structure that may be transformed or transformable, in situ, into a collection of larger numbers of unique tagging or “barcode” moieties.
    Type: Application
    Filed: October 18, 2024
    Publication date: February 6, 2025
    Inventors: Paul Ryvkin, Jason Underwood, Michael Schnall-Levin, Tarjei Mikkelsen, Benjamin Hindson
  • Publication number: 20250027149
    Abstract: This disclosure provides methods and compositions for sample processing, particularly for sequencing applications. Included within this disclosure are bead compositions, such as diverse libraries of beads attached to large numbers of oligonucleotides containing barcodes. Often, the beads provides herein are degradable. For example, they may contain disulfide bonds that are susceptible to reducing agents. The methods provided herein include methods of making libraries of barcoded beads as well as methods of combining the beads with a sample, such as by using a microfluidic device.
    Type: Application
    Filed: July 1, 2024
    Publication date: January 23, 2025
    Inventors: Benjamin Hindson, Christopher Hindson, Michael Schnall-Levin, Kevin Ness, Mirna Jarosz, Serge Saxonov
  • Patent number: 12163191
    Abstract: The present disclosure relates to methods, compositions and systems for haplotype phasing and copy number variation assays. Included within this disclosure are methods and systems for combining the barcode comprising beads with samples in multiple separate partitions, as well as methods of processing, sequencing and analyzing barcoded samples.
    Type: Grant
    Filed: June 11, 2020
    Date of Patent: December 10, 2024
    Assignee: 10X GENOMICS, INC.
    Inventors: Michael Schnall-Levin, Mirna Jarosz, Christopher Hindson, Kevin Ness, Serge Saxonov, Benjamin Hindson, Xinying Zheng, Patrick Marks, John Stuelpnagel
  • Patent number: 12152278
    Abstract: Provided herein are compositions, systems and methods for tagging molecular events, reactions, species, etc., but without the need for complex, highly diverse libraries of tagging molecules. Provided are tagging moieties that can have a smaller number, a few, or even a single original “tagging” structure that may be transformed or transformable, in situ, into a collection of larger numbers of unique tagging or “barcode” moieties.
    Type: Grant
    Filed: May 19, 2022
    Date of Patent: November 26, 2024
    Assignee: 10X GENOMICS, INC.
    Inventors: Paul Ryvkin, Jason Underwood, Michael Schnall-Levin, Tarjei Mikkelsen, Benjamin Hindson
  • Publication number: 20240384348
    Abstract: The present disclosure relates to methods, compositions and systems for haplotype phasing and copy number variation assays. Included within this disclosure are methods and systems for combining the barcode comprising beads with samples in multiple separate partitions, as well as methods of processing, sequencing and analyzing barcoded samples.
    Type: Application
    Filed: July 26, 2024
    Publication date: November 21, 2024
    Inventors: Michael SCHNALL-LEVIN, Mirna Jarosz, Christopher Hindson, Kevin Ness, Serge Saxonov, Benjamin Hindson, Xinying Zheng, Patrick Marks, John Stuelpnagel
  • Publication number: 20240376519
    Abstract: This disclosure provides methods and compositions for sample processing, particularly for sequencing applications. Included within this disclosure are bead compositions, such as diverse libraries of beads attached to large numbers of oligonucleotides containing barcodes. Often, the beads provides herein are degradable. For example, they may contain disulfide bonds that are susceptible to reducing agents. The methods provided herein include methods of making libraries of barcoded beads as well as methods of combining the beads with a sample, such as by using a microfluidic device.
    Type: Application
    Filed: October 27, 2023
    Publication date: November 14, 2024
    Inventors: Benjamin Hindson, Christopher Hindson, Michael Schnall-Levin, Kevin Ness, Mirna Jarosz, Donald Masquelier, Serge Saxonov, Landon Merrill, Andrew Price, Paul Hardenbol, Yuan Li
  • Publication number: 20240376539
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing. Such polynucleotide processing may be useful for a variety of applications, including polynucleotide sequencing.
    Type: Application
    Filed: November 2, 2023
    Publication date: November 14, 2024
    Inventors: Benjamin Hindson, Serge Saxonov, Kevin Ness, Paul Hardenbol, Michael Schnall-Levin, Mirna Jarosz
  • Patent number: 12131805
    Abstract: The invention described herein solves challenges in providing a proficient, rapid and meaningful analysis of sequencing data. Methods and computer program products of the invention allow for a system to receive, analyze, and display sequencing data in real-time. The invention provides solutions to several difficulties encountered in assembling short sequencing-reads, and by doing so the invention improves the worth and significance of sequencing data.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: October 29, 2024
    Assignee: 10X GENOMICS, INC.
    Inventors: Michael Schnall-Levin, Mirna Jarosz, Serge Saxonov, Kevin Ness, Benjamin Hindson
  • Publication number: 20240336967
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing. Such polynucleotide processing may be useful for a variety of applications, including polynucleotide sequencing. In some cases, this disclosure provides methods for the generation of polynucleotide barcode libraries, and for the attachment of such polynucleotides to target polynucleotides.
    Type: Application
    Filed: October 5, 2023
    Publication date: October 10, 2024
    Inventors: Benjamin Hindson, Mirna Jarosz, Paul Hardenbol, Michael Schnall-Levin, Kevin Ness, Serge Saxonov
  • Publication number: 20240326052
    Abstract: The disclosure provides devices, systems and methods for the generation of encapsulated reagents and the partitioning of encapsulated reagents for use in subsequent analyses and/or processing, such as in the field of biological analyses and characterization.
    Type: Application
    Filed: June 10, 2024
    Publication date: October 3, 2024
    Inventors: Rajiv BHARADWAJ, Kevin Ness, Debkishore Mitra, Donald A. MASQUELIER, Anthony Makarewicz, Christopher Hindson, Benjamin Hindson, Serge Saxonov
  • Patent number: 12098423
    Abstract: This disclosure provides methods and compositions for sample processing, particularly for sequencing applications. Included within this disclosure are bead compositions, such as diverse libraries of beads attached to large numbers of oligonucleotides containing barcodes. Often, the beads provides herein are degradable. For example, they may contain disulfide bonds that are susceptible to reducing agents. The methods provided herein include methods of making libraries of barcoded beads as well as methods of combining the beads with a sample, such as by using a microfluidic device.
    Type: Grant
    Filed: January 7, 2020
    Date of Patent: September 24, 2024
    Assignee: 10X GENOMICS, INC.
    Inventors: Benjamin Hindson, Christopher Hindson, Michael Schnall-Levin, Kevin Ness, Mirna Jarosz, Serge Saxonov
  • Patent number: 12037634
    Abstract: This disclosure provides microwell capsule array devices. The microwell capsule array devices are generally capable of performing one or more sample preparation operations. Such sample preparation operations may be used as a prelude to one more or more analysis operations. For example, a device of this disclosure can achieve physical partitioning and discrete mixing of samples with unique molecular identifiers within a single unit in preparation for various analysis operations. The device may be useful in a variety of applications and most notably nucleic-acid-based sequencing, detection and quantification of gene expression and single-cell analysis.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: July 16, 2024
    Assignee: 10X GENOMICS, INC.
    Inventors: Benjamin Hindson, Serge Saxonov, Michael Schnall-Levin
  • Publication number: 20240218437
    Abstract: The present disclosure relates in some aspects to methods and compositions for assessing system performance for in situ analyte detection. In some aspects, performance of an individual instrument can be assessed, or the performance of two or more instruments can be assessed and optionally compared. In some aspects, disclosed herein is a method comprising using rolling circle amplification products (RCPs) deposited on a cell-free and tissue-free quality control (QC) slide to assess performance of instrument workflow, where an instrument is used to decode signals associated with the RCPs on the QC slide. Quality metrics associated with the decoding (e.g., a percentage of RCPs successfully decoded to genes) can be used to qualify a system comprising the instrument and reagents for in situ analyte detection in cells or tissue samples, e.g., using in situ probe hybridization or in situ sequencing performed on the instrument.
    Type: Application
    Filed: December 15, 2023
    Publication date: July 4, 2024
    Inventors: Zahra Kamila BELHOCINE, Zachary W. BENT, Rajiv BHARADWAJ, Alexander GAGNON, Qiang GONG, Ashley HAYES, Benjamin HINDSON, Yuwei LI, Benjamin PRUITT, Daniel P. RIORDAN, Hiroshi SASAKI, Weiyi TANG