Patents by Inventor Benjamin Isaac Mattinson

Benjamin Isaac Mattinson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12055935
    Abstract: Techniques relating to training a model for detecting that a vehicle is likely to perform a cut-in maneuver are described. Computing device(s) can receive log data associated with vehicles in an environment and can detect an event in the log data, wherein an event corresponds to a cut-in maneuver performed by a vehicle. In an example, the computing device(s) can generate training data based at least in part on converting a portion of the log data that corresponds to the event into a top-down representation of the environment and inputting the training data into a model, wherein the model is trained to output an indication of whether another vehicle is likely to perform another cut-in maneuver.
    Type: Grant
    Filed: July 8, 2022
    Date of Patent: August 6, 2024
    Assignee: Zoox, Inc.
    Inventors: Michael Haggblade, Benjamin Isaac Mattinson
  • Patent number: 11708093
    Abstract: Techniques to predict object behavior in an environment are discussed herein. For example, such techniques may include determining a trajectory of the object, determining an intent of the trajectory, and sending the trajectory and the intent to a vehicle computing system to control an autonomous vehicle. The vehicle computing system may implement a machine learned model to process data such as sensor data and map data. The machine learned model can associate different intentions of an object in an environment with different trajectories. A vehicle, such as an autonomous vehicle, can be controlled to traverse an environment based on object's intentions and trajectories.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: July 25, 2023
    Assignee: Zoox, Inc.
    Inventors: Kenneth Michael Siebert, Gowtham Garimella, Benjamin Isaac Mattinson, Samir Parikh, Kai Zhenyu Wang
  • Publication number: 20230028035
    Abstract: Techniques relating to training a model for detecting that a vehicle is likely to perform a cut-in maneuver are described. Computing device(s) can receive log data associated with vehicles in an environment and can detect an event in the log data, wherein an event corresponds to a cut-in maneuver performed by a vehicle. In an example, the computing device(s) can generate training data based at least in part on converting a portion of the log data that corresponds to the event into a top-down representation of the environment and inputting the training data into a model, wherein the model is trained to output an indication of whether another vehicle is likely to perform another cut-in maneuver.
    Type: Application
    Filed: July 8, 2022
    Publication date: January 26, 2023
    Inventors: Michael Haggblade, Benjamin Isaac Mattinson
  • Patent number: 11385642
    Abstract: Techniques relating to training a model for detecting that a vehicle is likely to perform a cut-in maneuver are described. Computing device(s) can receive log data associated with vehicles in an environment and can detect an event in the log data, wherein an event corresponds to a cut-in maneuver performed by a vehicle. In an example, the computing device(s) can generate training data based at least in part on converting a portion of the log data that corresponds to the event into a top-down representation of the environment and inputting the training data into a model, wherein the model is trained to output an indication of whether another vehicle is likely to perform another cut-in maneuver.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: July 12, 2022
    Assignee: Zoox, Inc.
    Inventors: Michael Haggblade, Benjamin Isaac Mattinson
  • Publication number: 20210347383
    Abstract: Techniques to predict object behavior in an environment are discussed herein. For example, such techniques may include determining a trajectory of the object, determining an intent of the trajectory, and sending the trajectory and the intent to a vehicle computing system to control an autonomous vehicle. The vehicle computing system may implement a machine learned model to process data such as sensor data and map data. The machine learned model can associate different intentions of an object in an environment with different trajectories. A vehicle, such as an autonomous vehicle, can be controlled to traverse an environment based on object's intentions and trajectories.
    Type: Application
    Filed: May 8, 2020
    Publication date: November 11, 2021
    Inventors: Kenneth Michael Siebert, Gowtham Garimella, Benjamin Isaac Mattinson, Samir Parikh, Kai Zhenyu Wang
  • Publication number: 20210269065
    Abstract: Techniques relating to detecting that a vehicle is likely to enter a lane region in front of another vehicle is described. In an example, computing device(s) onboard a first vehicle can receive sensor data associated with an environment of the first vehicle. Based at least in part on an attribute determined from the sensor data, the computing device(s) can determine that a second vehicle proximate the first vehicle is predicted to enter a lane region in front of the first vehicle from a different direction of travel (e.g., by performing a u-turn, n-point turn, exiting a parting spot or driveway, etc.). In an example, the computing device(s) can determine an instruction for controlling the first vehicle based at least in part on the determining that the second vehicle is predicted to enter the lane region in front of the first vehicle.
    Type: Application
    Filed: February 27, 2020
    Publication date: September 2, 2021
    Inventors: Michael Haggblade, Benjamin Isaac Mattinson
  • Publication number: 20210271241
    Abstract: Techniques relating to training a model for detecting that a vehicle is likely to perform a cut-in maneuver are described. Computing device(s) can receive log data associated with vehicles in an environment and can detect an event in the log data, wherein an event corresponds to a cut-in maneuver performed by a vehicle. In an example, the computing device(s) can generate training data based at least in part on converting a portion of the log data that corresponds to the event into a top-down representation of the environment and inputting the training data into a model, wherein the model is trained to output an indication of whether another vehicle is likely to perform another cut-in maneuver.
    Type: Application
    Filed: February 27, 2020
    Publication date: September 2, 2021
    Inventors: Michael Haggblade, Benjamin Isaac Mattinson