Patents by Inventor Benjamin Isaac Zwiebel

Benjamin Isaac Zwiebel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11802969
    Abstract: Techniques are discussed for controlling a vehicle, such as an autonomous vehicle, based on occluded areas in an environment. An occluded area can represent areas where sensors of the vehicle are unable to sense portions of the environment due to obstruction by another object. An occlusion grid representing the occluded area can be stored as map data or can be dynamically generated. An occlusion grid can include occlusion fields, which represent discrete two- or three-dimensional areas of driveable environment. An occlusion field can indicate an occlusion state and an occupancy state, determined using LIDAR data and/or image data captured by the vehicle. An occupancy state of an occlusion field can be determined by ray casting LIDAR data or by projecting an occlusion field into segmented image data. The vehicle can be controlled to traverse the environment when a sufficient portion of the occlusion grid is visible and unoccupied.
    Type: Grant
    Filed: May 26, 2022
    Date of Patent: October 31, 2023
    Assignee: Zoox, Inc.
    Inventors: William Anthony Silva, Dragomir Dimitrov Anguelov, Benjamin Isaac Zwiebel, Juhana Kangaspunta
  • Patent number: 11710296
    Abstract: Techniques for a perception system of a vehicle that can detect and track objects in an environment are described herein. The perception system may include a machine-learned model that includes one or more different portions, such as different components, subprocesses, or the like. In some instances, the techniques may include training the machine-learned model end-to-end such that outputs of a first portion of the machine-learned model are tailored for use as inputs to another portion of the machine-learned model. Additionally, or alternatively, the perception system described herein may utilize temporal data to track objects in the environment of the vehicle and associate tracking data with specific objects in the environment detected by the machine-learned model. That is, the architecture of the machine-learned model may include both a detection portion and a tracking portion in the same loop.
    Type: Grant
    Filed: December 3, 2021
    Date of Patent: July 25, 2023
    Assignee: Zoox, Inc.
    Inventors: Cheng-Hsin Wuu, Subhasis Das, Po-Jen Lai, Qian Song, Benjamin Isaac Zwiebel
  • Publication number: 20230177804
    Abstract: Techniques for a perception system of a vehicle that can detect and track objects in an environment are described herein. The perception system may include a machine-learned model that includes one or more different portions, such as different components, subprocesses, or the like. In some instances, the techniques may include training the machine-learned model end-to-end such that outputs of a first portion of the machine-learned model are tailored for use as inputs to another portion of the machine-learned model. Additionally, or alternatively, the perception system described herein may utilize temporal data to track objects in the environment of the vehicle and associate tracking data with specific objects in the environment detected by the machine-learned model. That is, the architecture of the machine-learned model may include both a detection portion and a tracking portion in the same loop.
    Type: Application
    Filed: December 3, 2021
    Publication date: June 8, 2023
    Inventors: Cheng-Hsin Wuu, Subhasis Das, Po-Jen Lai, Qian Song, Benjamin Isaac Zwiebel
  • Publication number: 20230174110
    Abstract: Techniques for a perception system of a vehicle that can detect and track objects in an environment are described herein. The perception system may include a machine-learned model that includes one or more different portions, such as different components, subprocesses, or the like. In some instances, the techniques may include training the machine-learned model end-to-end such that outputs of a first portion of the machine-learned model are tailored for use as inputs to another portion of the machine-learned model. Additionally, or alternatively, the perception system described herein may utilize temporal data to track objects in the environment of the vehicle and associate tracking data with specific objects in the environment detected by the machine-learned model. That is, the architecture of the machine-learned model may include both a detection portion and a tracking portion in the same loop.
    Type: Application
    Filed: December 3, 2021
    Publication date: June 8, 2023
    Inventors: Cheng-Hsin Wuu, Subhasis Das, Po-Jen Lai, Qian Song, Benjamin Isaac Zwiebel
  • Publication number: 20230169777
    Abstract: Techniques for detecting and tracking objects in an environment are discussed herein. For example, techniques can include detecting a center point of a block of pixels associated with an object. Unimodal (e.g., Gaussian) confidence values may be determined for a group of pixels associated with an object. Proposed detection box center points may be determined based on the Gaussian confidence values of the pixels and an output detection box may be determined using filtering and/or suppression techniques. Further, a machine-learned model can be trained by determining parameters of a center pixel of the detection box and a focal loss based on the unimodal confidence value which can then be backpropagated to the other pixels of the detection.
    Type: Application
    Filed: November 30, 2021
    Publication date: June 1, 2023
    Inventors: Qian Song, Benjamin Isaac Zwiebel
  • Patent number: 11663726
    Abstract: Tracking a current and/or previous position, velocity, acceleration, and/or heading of an object using sensor data may comprise determining whether to associate a current object detection generated from recently received (e.g., current) sensor data with a previous object detection generated from formerly received sensor data. In other words, a track may identify that an object detected in former sensor data is the same object detected in current sensor data. However, multiple types of sensor data may be used to detect objects and some objects may not be detected by different sensor types or may be detected differently, which may confound attempts to track an object. An ML model may be trained to receive outputs associated with different sensor types and/or a track associated with an object, and determine a data structure comprising a region of interest, object classification, and/or a pose associated with the object.
    Type: Grant
    Filed: May 5, 2020
    Date of Patent: May 30, 2023
    Assignee: Zoox, Inc.
    Inventors: Subhasis Das, Kai Yu, Benjamin Isaac Zwiebel
  • Patent number: 11625041
    Abstract: Techniques are disclosed for a combined machine learned (ML) model that may generate a track confidence metric associated with a track and/or a classification of an object. Techniques may include obtaining a track. The track, which may include object detections from one or more sensor data types and/or pipelines, may be input into a machine-learning (ML) model. The model may output a track confidence metric and a classification. In some examples, if the track confidence metric does not satisfy a threshold, the ML model may cause the suppression of the output of the track to a planning component of an autonomous vehicle.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: April 11, 2023
    Assignee: Zoox, Inc.
    Inventors: Subhasis Das, Shida Shen, Kai Yu, Benjamin Isaac Zwiebel
  • Publication number: 20220350337
    Abstract: Techniques are discussed for controlling a vehicle, such as an autonomous vehicle, based on occluded areas in an environment. An occluded area can represent areas where sensors of the vehicle are unable to sense portions of the environment due to obstruction by another object. An occlusion grid representing the occluded area can be stored as map data or can be dynamically generated. An occlusion grid can include occlusion fields, which represent discrete two- or three-dimensional areas of driveable environment. An occlusion field can indicate an occlusion state and an occupancy state, determined using LIDAR data and/or image data captured by the vehicle. An occupancy state of an occlusion field can be determined by ray casting LIDAR data or by projecting an occlusion field into segmented image data. The vehicle can be controlled to traverse the environment when a sufficient portion of the occlusion grid is visible and unoccupied.
    Type: Application
    Filed: May 26, 2022
    Publication date: November 3, 2022
    Inventors: William Anthony Silva, Dragomir Dimitrov Anguelov, Benjamin Isaac Zwiebel, Juhana Kangaspunta
  • Patent number: 11347228
    Abstract: Techniques are discussed for controlling a vehicle, such as an autonomous vehicle, based on occluded areas in an environment. An occluded area can represent areas where sensors of the vehicle are unable to sense portions of the environment due to obstruction by another object. An occlusion grid representing the occluded area can be stored as map data or can be dynamically generated. An occlusion grid can include occlusion fields, which represent discrete two- or three-dimensional areas of driveable environment. An occlusion field can indicate an occlusion state and an occupancy state, determined using LIDAR data and/or image data captured by the vehicle. An occupancy state of an occlusion field can be determined by ray casting LIDAR data or by projecting an occlusion field into segmented image data. The vehicle can be controlled to traverse the environment when a sufficient portion of the occlusion grid is visible and unoccupied.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: May 31, 2022
    Assignee: Zoox, Inc.
    Inventors: William Anthony Silva, Dragomir Dimitrov Anguelov, Benjamin Isaac Zwiebel, Juhana Kangaspunta
  • Publication number: 20210263525
    Abstract: Techniques are disclosed for a combined machine learned (ML) model that may generate a track confidence metric associated with a track and/or a classification of an object. Techniques may include obtaining a track. The track, which may include object detections from one or more sensor data types and/or pipelines, may be input into a machine-learning (ML) model. The model may output a track confidence metric and a classification. In some examples, if the track confidence metric does not satisfy a threshold, the ML model may cause the suppression of the output of the track to a planning component of an autonomous vehicle.
    Type: Application
    Filed: February 21, 2020
    Publication date: August 26, 2021
    Inventors: Subhasis Das, Shida Shen, Kai Yu, Benjamin Isaac Zwiebel
  • Publication number: 20210237761
    Abstract: Tracking a current and/or previous position, velocity, acceleration, and/or heading of an object using sensor data may comprise determining whether to associate a current object detection generated from recently received (e.g., current) sensor data with a previous object detection generated from formerly received sensor data. In other words, a track may identify that an object detected in former sensor data is the same object detected in current sensor data. However, multiple types of sensor data may be used to detect objects and some objects may not be detected by different sensor types or may be detected differently, which may confound attempts to track an object. An ML model may be trained to receive outputs associated with different sensor types and/or a track associated with an object, and determine a data structure comprising a region of interest, object classification, and/or a pose associated with the object.
    Type: Application
    Filed: May 5, 2020
    Publication date: August 5, 2021
    Inventors: Subhasis Das, Kai Yu, Benjamin Isaac Zwiebel
  • Patent number: 11048265
    Abstract: Techniques are discussed for controlling a vehicle, such as an autonomous vehicle, based on occluded areas in an environment. An occluded area can represent areas where sensors of the vehicle are unable to sense portions of the environment due to obstruction by another object. An occlusion grid representing the occluded area can be stored as map data or can be dynamically generated. An occlusion grid can include occlusion fields, which represent discrete two- or three-dimensional areas of driveable environment. An occlusion field can indicate an occlusion state and an occupancy state, determined using LIDAR data and/or image data captured by the vehicle. An occupancy state of an occlusion field can be determined by ray casting LIDAR data or by projecting an occlusion field into segmented image data. The vehicle can be controlled to traverse the environment when a sufficient portion of the occlusion grid is visible and unoccupied.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: June 29, 2021
    Assignee: Zoox, Inc.
    Inventors: William Anthony Silva, Dragomir Dimitrov Anguelov, Benjamin Isaac Zwiebel, Juhana Kangaspunta
  • Publication number: 20210181758
    Abstract: Tracking a current and/or previous position, velocity, acceleration, and/or heading of an object using sensor data may comprise determining whether to associate a current object detection generated from recently received (e.g., current) sensor data with a previous object detection generated from formerly received sensor data. In other words, a track may identify that an object detected in former sensor data is the same object detected in current sensor data. However, multiple types of sensor data may be used to detect objects and some objects may not be detected by different sensor types or may be detected differently, which may confound attempts to track an object. An ML model may be trained to receive outputs associated with different sensor types and/or a track associated with an object, and determine a data structure comprising a region of interest, object classification, and/or a pose associated with the object.
    Type: Application
    Filed: January 31, 2020
    Publication date: June 17, 2021
    Inventors: Subhasis Das, Benjamin Isaac Zwiebel, Kai Yu, James William Vaisey Philbin
  • Publication number: 20200225672
    Abstract: Techniques are discussed for controlling a vehicle, such as an autonomous vehicle, based on occluded areas in an environment. An occluded area can represent areas where sensors of the vehicle are unable to sense portions of the environment due to obstruction by another object. An occlusion grid representing the occluded area can be stored as map data or can be dynamically generated. An occlusion grid can include occlusion fields, which represent discrete two- or three-dimensional areas of driveable environment. An occlusion field can indicate an occlusion state and an occupancy state, determined using LIDAR data and/or image data captured by the vehicle. An occupancy state of an occlusion field can be determined by ray casting LIDAR data or by projecting an occlusion field into segmented image data. The vehicle can be controlled to traverse the environment when a sufficient portion of the occlusion grid is visible and unoccupied.
    Type: Application
    Filed: March 26, 2020
    Publication date: July 16, 2020
    Inventors: William Anthony Silva, Dragomir Dimitrov Anguelov, Benjamin Isaac Zwiebel, Juhana Kangaspunta
  • Patent number: 10642275
    Abstract: Techniques are discussed for controlling a vehicle, such as an autonomous vehicle, based on occluded areas in an environment. An occluded area can represent areas where sensors of the vehicle are unable to sense portions of the environment due to obstruction by another object. An occlusion grid representing the occluded area can be stored as map data or can be dynamically generated. An occlusion grid can include occlusion fields, which represent discrete two- or three-dimensional areas of driveable environment. An occlusion field can indicate an occlusion state and an occupancy state, determined using LIDAR data and/or image data captured by the vehicle. An occupancy state of an occlusion field can be determined by ray casting LIDAR data or by projecting an occlusion field into segmented image data. The vehicle can be controlled to traverse the environment when a sufficient portion of the occlusion grid is visible and unoccupied.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: May 5, 2020
    Assignee: Zoox, Inc.
    Inventors: William Anthony Silva, Dragomir Dimitrov Anguelov, Benjamin Isaac Zwiebel, Juhana Kangaspunta
  • Publication number: 20190384302
    Abstract: Techniques are discussed for controlling a vehicle, such as an autonomous vehicle, based on occluded areas in an environment. An occluded area can represent areas where sensors of the vehicle are unable to sense portions of the environment due to obstruction by another object. An occlusion grid representing the occluded area can be stored as map data or can be dynamically generated. An occlusion grid can include occlusion fields, which represent discrete two- or three-dimensional areas of driveable environment. An occlusion field can indicate an occlusion state and an occupancy state, determined using LIDAR data and/or image data captured by the vehicle. An occupancy state of an occlusion field can be determined by ray casting LIDAR data or by projecting an occlusion field into segmented image data. The vehicle can be controlled to traverse the environment when a sufficient portion of the occlusion grid is visible and unoccupied.
    Type: Application
    Filed: June 18, 2018
    Publication date: December 19, 2019
    Inventors: William Anthony Silva, Dragomir Dimitrov Anguelov, Benjamin Isaac Zwiebel, Juhana Kangaspunta
  • Publication number: 20190384309
    Abstract: Techniques are discussed for controlling a vehicle, such as an autonomous vehicle, based on occluded areas in an environment. An occluded area can represent areas where sensors of the vehicle are unable to sense portions of the environment due to obstruction by another object. An occlusion grid representing the occluded area can be stored as map data or can be dynamically generated. An occlusion grid can include occlusion fields, which represent discrete two- or three-dimensional areas of driveable environment. An occlusion field can indicate an occlusion state and an occupancy state, determined using LIDAR data and/or image data captured by the vehicle. An occupancy state of an occlusion field can be determined by ray casting LIDAR data or by projecting an occlusion field into segmented image data. The vehicle can be controlled to traverse the environment when a sufficient portion of the occlusion grid is visible and unoccupied.
    Type: Application
    Filed: June 18, 2018
    Publication date: December 19, 2019
    Inventors: William Anthony Silva, Dragomir Dimitrov Anguelov, Benjamin Isaac Zwiebel, Juhana Kangaspunta