Patents by Inventor Benjamin J. Clark

Benjamin J. Clark has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250022054
    Abstract: Computer-implemented systems and methods for facilitating litigation funding advances are disclosed. The systems and methods may include performing steps for: receiving claim information on a contentious batch of one or more claims through an electronic portal; surfacing the claim information to one or more potential funders via the electronic portal, wherein the claim information comprises a payment schedule in return for a funding advance by the one or more potential funders; receiving one or more user inputs from a first funder among the one or more potential funders to transfer the funding advance for a first batch of one or more claims corresponding to the claim information; and initiating a first secure transaction between the one or more potential funders and a legal counsel of the first batch of one or more claims.
    Type: Application
    Filed: September 30, 2024
    Publication date: January 16, 2025
    Inventors: Theodore J. BERMAN, Russell F. BERMAN, Jeremy W. ALTERS, Logan A. ALTERS, Benjamin H. CLARK, Jason B. DAVIS
  • Publication number: 20240216006
    Abstract: The present technology is directed generally to devices, systems, and methods for capturing and cutting fibrous and trabeculated structures (such as synechiae) in vessel lumens. In one embodiment, the present technology includes an intraluminal tissue modifying system configured to capture the fibrous structures, put the fibrous structures in tension, and controllably cut through the fibrous structures without applying appreciable additional force to the vessel wall. The system may include an expandable capture device and a cutting device.
    Type: Application
    Filed: December 14, 2023
    Publication date: July 4, 2024
    Inventors: Fletcher T. Wilson, David Batten, Benjamin J. Clark, Michi E. Garrison
  • Publication number: 20240164849
    Abstract: Endovascular valve formation systems with imaging capabilities and associated devices and methods are disclosed herein. In some embodiments, a valve formation and imaging system can include, for example, (i) a valve formation device configured to access a vessel wall and dissect a portion of the vessel wall to form an autologous valve leaflet and (ii) an imaging device configured to image the vessel wall and components of the valve formation device during a valve formation procedure. In some embodiments, the imaging device is integrated into a distal end portion of the valve formation device. In some embodiments, the imaging device is a separate catheter device positionally coupled to the valve formation device and/or components thereof.
    Type: Application
    Filed: August 30, 2023
    Publication date: May 23, 2024
    Inventors: Fletcher T. Wilson, Michi E. Garrison, Kent D. Dell, Herbert Mendoza, Benjamin J. Clark, Emmanuelle F. Pease
  • Patent number: 11877767
    Abstract: The present technology is directed generally to devices, systems, and methods for capturing and cutting fibrous and trabeculated structures (such as synechiae) in vessel lumens. In one embodiment, the present technology includes an intraluminal tissue modifying system configured to capture the fibrous structures, put the fibrous structures in tension, and controllably cut through the fibrous structures without applying appreciable additional force to the vessel wall. The system may include an expandable capture device and a cutting device.
    Type: Grant
    Filed: December 22, 2021
    Date of Patent: January 23, 2024
    Assignee: INTERVENE, INC
    Inventors: Fletcher T. Wilson, David Batten, Benjamin J. Clark, Michi E. Garrison
  • Publication number: 20230404662
    Abstract: Apparatus, systems, and methods for achieving thermally-induced renal neuromodulation by intravascular access are disclosed herein. One aspect of the present application, for example, is directed to apparatuses, systems, and methods that incorporate a treatment device comprising an elongated shaft. The elongated shaft is sized and configured to deliver a thermal element to a renal artery via an intravascular path. Thermally-induced renal neuromodulation may be achieved via direct and/or via indirect application of thermal energy to heat or cool neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers.
    Type: Application
    Filed: August 30, 2023
    Publication date: December 21, 2023
    Inventors: Andrew Wu, Benjamin J. Clark, Denise Zarins, Erik Thai
  • Patent number: 11801085
    Abstract: Methods and system are provided for thermally-induced renal neuromodulation. Thermally-induced renal neuromodulation may be achieved via direct and/or via indirect application of thermal energy to heat or cool neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers. In some embodiments, parameters of the neural fibers, of non-target tissue, or of the thermal energy delivery element, may be monitored via one or more sensors for controlling the thermally-induced neuromodulation. In some embodiments, protective elements may be provided to reduce a degree of thermal damage induced in the non-target tissues. In some embodiments, thermally-induced renal neuromodulation is achieved via delivery of a pulsed thermal therapy.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: October 31, 2023
    Assignee: Medtronic Ireland Manufacturing Unlimited Company
    Inventors: Andrew Wu, Benjamin J. Clark, Erik Thai, Nicolas Zadno, Denise Zarins
  • Patent number: 11771501
    Abstract: Endovascular valve formation systems with imaging capabilities and associated devices and methods are disclosed herein. In some embodiments, a valve formation and imaging system can include, for example, (i) a valve formation device configured to access a vessel wall and dissect a portion of the vessel wall to form an autologous valve leaflet and (ii) an imaging device configured to image the vessel wall and components of the valve formation device during a valve formation procedure. In some embodiments, the imaging device is integrated into a distal end portion of the valve formation device. In some embodiments, the imaging device is a separate catheter device positionally coupled to the valve formation device and/or components thereof.
    Type: Grant
    Filed: June 23, 2021
    Date of Patent: October 3, 2023
    Assignee: INTERVENE, INC.
    Inventors: Fletcher T. Wilson, Michi E. Garrison, Kent D. Dell, Herbert Mendoza, Benjamin J. Clark, Emmanuelle F. Pease
  • Patent number: 11751931
    Abstract: Cryotherapeutic devices for renal neuromodulation and associated systems and methods are disclosed herein. A cryotherapeutic device configured in accordance with a particular embodiment of the present technology can include an elongated shaft having a distal portion and a supply lumen along at least a portion of the shaft. The shaft can be configured to locate the distal portion intravascularly at a treatment site proximate a renal artery or renal ostium. The supply lumen can be configured to receive a liquid refrigerant. The cryotherapeutic device can further include a cooling assembly at the distal portion of the shaft. The cooling assembly can include an applicator having a distributor in fluid communication with the supply lumen and a balloon configured to deliver cryotherapeutic cooling to nerves proximate the treatment site when the cooling assembly is in a deployed state.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: September 12, 2023
    Assignee: Medtronic Ardian Luxembourg S.A.R.L.
    Inventors: Benjamin J. Clark, David J. Hobbins, Tim Huynh, Grace Kelly, Brian Kelly
  • Publication number: 20230277240
    Abstract: Apparatus, systems, and methods for achieving thermally-induced renal neuromodulation by intravascular access are disclosed herein. One aspect of the present application, for example, is directed to apparatuses, systems, and methods that incorporate a treatment device comprising an elongated shaft. The elongated shaft is sized and configured to deliver a thermal element to a renal artery via an intravascular path. Thermally-induced renal neuromodulation may be achieved via direct and/or via indirect application of thermal energy to heat or cool neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers.
    Type: Application
    Filed: April 21, 2023
    Publication date: September 7, 2023
    Inventors: Andrew Wu, Benjamin J. Clark, Denise Zarins, Erik Thai
  • Patent number: 11666380
    Abstract: Apparatus, systems, and methods for achieving thermally-induced renal neuromodulation by intravascular access are disclosed herein. One aspect of the present application, for example, is directed to apparatuses, systems, and methods that incorporate a treatment device comprising an elongated shaft. The elongated shaft is sized and configured to deliver a thermal element to a renal artery via an intravascular path. Thermally-induced renal neuromodulation may be achieved via direct and/or via indirect application of thermal energy to heat or cool neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: June 6, 2023
    Assignee: MEDTRONIC IRELAND MANUFACTURING UNLIMITED COMPANY
    Inventors: Andrew Wu, Benjamin J. Clark, Denise Zarins, Erik Thai
  • Publication number: 20220346827
    Abstract: The present technology is directed generally to devices, systems, and methods for capturing and cutting fibrous and trabeculated structures (such as synechiae) in vessel lumens. In one embodiment, the present technology includes an intraluminal tissue modifying system configured to capture the fibrous structures, put the fibrous structures in tension, and controllably cut through the fibrous structures without applying appreciable additional force to the vessel wall. The system may include an expandable capture device and a cutting device.
    Type: Application
    Filed: December 22, 2021
    Publication date: November 3, 2022
    Inventors: Fletcher T. Wilson, David Batten, Benjamin J. Clark, Michi E. Garrison
  • Patent number: 11234727
    Abstract: The present technology is directed generally to devices, systems, and methods for capturing and cutting fibrous and trabeculated structures (such as synechiae) in vessel lumens. In one embodiment, the present technology includes an intraluminal tissue modifying system configured to capture the fibrous structures, put the fibrous structures in tension, and controllably cut through the fibrous structures without applying appreciable additional force to the vessel wall. The system may include an expandable capture device and a cutting device.
    Type: Grant
    Filed: May 11, 2020
    Date of Patent: February 1, 2022
    Assignee: InterVene, Inc.
    Inventors: Fletcher T. Wilson, David Batten, Benjamin J. Clark, Michi E. Garrison
  • Patent number: 11213674
    Abstract: Catheter assemblies for neuromodulation proximate a renal artery bifurcation and associated systems and methods are disclosed herein. A catheter assembly configured in accordance with a particular embodiment of the present technology can include a shaft having a proximal portion, a distal portion, and two therapeutic arms extending from the distal portion. The shaft can be configured to deliver the distal portion to a treatment site proximate a branch point or bifurcation in a renal blood vessel. The therapeutic arms can include energy delivery elements that are configured to deliver the therapeutically-effective energy to renal nerves proximate the branch point.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: January 4, 2022
    Assignee: MEDTRONIC ARDIAN LUXEMBOURG S.A.R.L.
    Inventors: Neil C. Barman, Robert J. Beetel, Benjamin J. Clark, Andrew Wu, Maria G. Aboytes, Denise Zarins
  • Publication number: 20210393334
    Abstract: Endovascular valve formation systems with imaging capabilities and associated devices and methods are disclosed herein. In some embodiments, a valve formation and imaging system can include, for example, (i) a valve formation device configured to access a vessel wall and dissect a portion of the vessel wall to form an autologous valve leaflet and (ii) an imaging device configured to image the vessel wall and components of the valve formation device during a valve formation procedure. In some embodiments, the imaging device is integrated into a distal end portion of the valve formation device. In some embodiments, the imaging device is a separate catheter device positionally coupled to the valve formation device and/or components thereof.
    Type: Application
    Filed: June 23, 2021
    Publication date: December 23, 2021
    Inventors: Fletcher T. Wilson, Michi E. Garrison, Kent D. Dell, Herbert Mendoza, Benjamin J. Clark, Emmanuelle F. Pease
  • Publication number: 20210369334
    Abstract: Methods and apparatus are provided for pulsed electric field neuromodulation via an intra-to-extravascular approach, e.g., to effectuate irreversible electroporation or electrofusion, necrosis and/or inducement of apoptosis, alteration of gene expression, changes in cytokine upregulation and other conditions in target neural fibers. In some embodiments, the ITEV PEF system comprises an intravascular catheter having one or more electrodes configured for intra-to-extravascular placement across a wall of patient's vessel into proximity with target neural fibers. With the electrode(s) passing from an intravascular position to an extravascular position prior to delivery of the PEF, a magnitude of applied voltage or energy delivered via the electrode(s) and necessary to achieve desired neuromodulation may be reduced relative to an intravascular PEF system having one or more electrodes positioned solely intravascularly.
    Type: Application
    Filed: August 17, 2021
    Publication date: December 2, 2021
    Inventors: Denise Zarins, Benjamin J. Clark, Nicolas Zadno, Hanson S. Gifford, III, Erik Thai
  • Publication number: 20210259755
    Abstract: Cryotherapeutic devices for renal neuromodulation and associated systems and methods are disclosed herein. A cryotherapeutic device configured in accordance with a particular embodiment of the present technology can include an elongated shaft having a distal portion and a supply lumen along at least a portion of the shaft. The shaft can be configured to locate the distal portion intravascularly at a treatment site proximate a renal artery or renal ostium. The supply lumen can be configured to receive a liquid refrigerant. The cryotherapeutic device can further include a cooling assembly at the distal portion of the shaft. The cooling assembly can include an applicator having a distributor in fluid communication with the supply lumen and a balloon configured to deliver cryotherapeutic cooling to nerves proximate the treatment site when the cooling assembly is in a deployed state.
    Type: Application
    Filed: December 30, 2020
    Publication date: August 26, 2021
    Inventors: Benjamin J. Clark, David J. Hobbins, Tim Huynh, Grace Kelly, Brian Kelly
  • Patent number: 10973185
    Abstract: A computer implemented system for a vertical farming system comprising at least a first crop growth module and operating in an environmentally-controlled growing chamber, the control system comprising sensors for measuring environmental growing conditions in the environmentally-controlled growing chamber over time to generate environmental condition data, a device configured for measuring a crop characteristic of a crop grown in the crop growth module of the environmentally-controlled growing chamber to generate crop growth data and a processing device comprising software modules for receiving the environmental condition data and the crop growth data; applying an algorithm to the environmental condition data and the crop growth data to generate an improved environmental growing condition and generating instructions for adjustment of the environmental growing conditions in or around the growth module in the environmentally-controlled growing chamber to the improved environmental growing condition.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: April 13, 2021
    Inventors: Jaremy Creechley, Jack Oslan, Nate Mazonson, Nathaniel R. Storey, Daniel Cook, Philip E. Beatty, John L. Whitcher, Christopher K. Conway, Ernest Learn, Michael Duffy, Russell Varone, Russell Field, William R. George, Rob Jensen, Benjamin J. Clark, Matthew Barnard, Matteo Melani
  • Publication number: 20210068886
    Abstract: Neuromodulation cryotherapeutic devices and associated systems and methods are disclosed herein. A cryotherapeutic device configured in accordance with a particular embodiment of the present technology can include an elongated shaft having distal portion and a supply lumen along at least a portion of the shaft. The shaft can be configured to locate the distal portion intravascularly at a treatment site proximate a renal artery or renal ostium. The supply lumen can be configured to receive a liquid refrigerant. The cryotherapeutic device can further include a cooling assembly at the distal portion of the shaft. The cooling assembly can include an applicator in fluid communication with the supply lumen and configured to deliver cryotherapeutic cooling to nerves proximate the target site when the cooling assembly is in a deployed state.
    Type: Application
    Filed: November 16, 2020
    Publication date: March 11, 2021
    Inventors: Naomi Buckley, Benjamin J. Clark, Michael Cummins, Danny Donovan, Mark Gelfand, Luke Hughes, Brian Kelly, Gary Kelly, Grace Kelly, John Kelly, Mark S. Leung, Gwenda Francis, Barry Mullins, Karun D. Naga, Stephen Nash, Eric Ryba, Fiachra Sweeney, Vincenzo Tilotta, Roman Turovskiy, Lana Woolley, Denise Zarins, Michael Turovskiy
  • Patent number: 10905490
    Abstract: Cryotherapeutic devices for renal neuromodulation and associated systems and methods are disclosed herein. A cryotherapeutic device configured in accordance with a particular embodiment of the present technology can include an elongated shaft having a distal portion and a supply lumen along at least a portion of the shaft. The shaft can be configured to locate the distal portion intravascularly at a treatment site proximate a renal artery or renal ostium. The supply lumen can be configured to receive a liquid refrigerant. The cryotherapeutic device can further include a cooling assembly at the distal portion of the shaft. The cooling assembly can include an applicator having a distributor in fluid communication with the supply lumen and a balloon configured to deliver cryotherapeutic cooling to nerves proximate the treatment site when the cooling assembly is in a deployed state.
    Type: Grant
    Filed: May 4, 2017
    Date of Patent: February 2, 2021
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Benjamin J. Clark, David J. Hobbins, Tim Huynh, Grace Kelly, Brian Kelly
  • Publication number: 20200405344
    Abstract: The present technology is directed generally to devices, systems, and methods for capturing and cutting fibrous and trabeculated structures (such as synechiae) in vessel lumens. In one embodiment, the present technology includes an intraluminal tissue modifying system configured to capture the fibrous structures, put the fibrous structures in tension, and controllably cut through the fibrous structures without applying appreciable additional force to the vessel wall. The system may include an expandable capture device and a cutting device.
    Type: Application
    Filed: May 11, 2020
    Publication date: December 31, 2020
    Inventors: Fletcher T. Wilson, David Batten, Benjamin J. Clark, Michi Garrison