Patents by Inventor Benjamin J. Clark

Benjamin J. Clark has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100168731
    Abstract: Apparatus, systems, and methods for achieving thermally-induced renal neuromodulation by intravascular access are disclosed herein. One aspect of the present application, for example, is directed to apparatuses, systems, and methods that incorporate a treatment device comprising an elongated shaft. The elongated shaft is sized and configured to deliver a thermal element to a renal artery via an intravascular path. Thermally-induced renal neuromodulation may be achieved via direct and/or via indirect application of thermal energy to heat or cool neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers.
    Type: Application
    Filed: August 21, 2009
    Publication date: July 1, 2010
    Applicant: Ardian, Inc.
    Inventors: Andrew Wu, Benjamin J. Clark, Denise Zarins, Erik Thai
  • Publication number: 20100137952
    Abstract: Methods and apparatus are provided for thermally-induced renal neuromodulation. Thermally-induced renal neuromodulation may be achieved via direct and/or via indirect application of thermal energy to heat or cool neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers. In some embodiments, parameters of the neural fibers, of non-target tissue, or of the thermal energy delivery element, may be monitored via one or more sensors for controlling the thermally-induced neuromodulation. In some embodiments, protective elements may be provided to reduce a degree of thermal damage induced in the non-target tissues.
    Type: Application
    Filed: February 4, 2010
    Publication date: June 3, 2010
    Applicant: Ardian, Inc.
    Inventors: Denise Demarais, Nicolas Zadno, Benjamin J. Clark, Erik Thai, Howard R. Levin, Mark Gelfand
  • Publication number: 20100137860
    Abstract: Methods and apparatus are provided for non-continuous circumferential treatment of a body lumen. Apparatus may be positioned within a body lumen of a patient and may deliver energy at a first lengthwise and angular position to create a less-than-full circumferential treatment zone at the first position. The apparatus also may deliver energy at one or more additional lengthwise and angular positions within the body lumen to create less-than-full circumferential treatment zone(s) at the one or more additional positions that are offset lengthwise and angularly from the first treatment zone. Superimposition of the first treatment zone and the one or more additional treatment zones defines a non-continuous circumferential treatment zone without formation of a continuous circumferential lesion. Various embodiments of methods and apparatus for achieving such non-continuous circumferential treatment are provided.
    Type: Application
    Filed: August 11, 2009
    Publication date: June 3, 2010
    Applicant: Ardian, Inc.
    Inventors: Denise Demarais, Hanson Gifford, III, Mark Deem, Nicolas Zadno, Benjamin J. Clark, Andrew Wu, Kenneth J. Michlitsch
  • Patent number: 7717948
    Abstract: Methods and apparatus are provided for thermally-induced renal neuromodulation. Thermally-induced renal neuromodulation may be achieved via direct and/or via indirect application of thermal energy to heat or cool neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers. In some embodiments, parameters of the neural fibers, of non-target tissue, or of the thermal energy delivery element, may be monitored via one or more sensors for controlling the thermally-induced neuromodulation. In some embodiments, protective elements may be provided to reduce a degree of thermal damage induced in the non-target tissues.
    Type: Grant
    Filed: August 16, 2007
    Date of Patent: May 18, 2010
    Assignee: Ardian, Inc.
    Inventors: Denise Demarais, Nicolas Zadno, Benjamin J. Clark, Erik Thai, Howard R. Levin, Mark Gelfand
  • Publication number: 20100057150
    Abstract: Methods and apparatus are provided for pulsed electric field neuromodulation via an intra-to-extravascular approach, e.g., to effectuate irreversible electroporation or electrofusion, necrosis and/or inducement of apoptosis, alteration of gene expression, changes in cytokine upregulation and other conditions in target neural fibers. In some embodiments, the ITEV PEF system comprises an intravascular catheter having one or more electrodes configured for intra-to-extravascular placement across a wall of patient's vessel into proximity with target neural fibers. With the electrode(s) passing from an intravascular position to an extravascular position prior to delivery of the PEF, a magnitude of applied voltage or energy delivered via the electrode(s) and necessary to achieve desired neuromodulation may be reduced relative to an intravascular PEF system having one or more electrodes positioned solely intravascularly.
    Type: Application
    Filed: November 11, 2009
    Publication date: March 4, 2010
    Applicant: Ardian, Inc.
    Inventors: Denise Demarais, Benjamin J. Clark, Nicolas Zadno, Erik Thai, Hanson Gifford, III
  • Patent number: 7620451
    Abstract: Methods and apparatus are provided for pulsed electric field neuromodulation via an intra-to-extravascular approach, e.g., to effectuate irreversible electroporation or electrofusion, necrosis and/or inducement of apoptosis, alteration of gene expression, changes in cytokine upregulation and other conditions in target neural fibers. In some embodiments, the ITEV PEF system comprises an intravascular catheter having one or more electrodes configured for intra-to-extravascular placement across a wall of patient's vessel into proximity with target neural fibers. With the electrode(s) passing from an intravascular position to an extravascular position prior to delivery of the PEF, a magnitude of applied voltage or energy delivered via the electrode(s) and necessary to achieve desired neuromodulation may be reduced relative to an intravascular PEF system having one or more electrodes positioned solely intravascularly.
    Type: Grant
    Filed: February 27, 2006
    Date of Patent: November 17, 2009
    Assignee: Ardian, Inc.
    Inventors: Denise Demarais, Benjamin J. Clark, Nicolas Zadno, Erik Thai, Hanson Gifford, III
  • Patent number: 7617005
    Abstract: Methods and apparatus are provided for thermally-induced renal neuromodulation. Thermally-induced renal neuromodulation may be achieved via direct and/or via indirect application of thermal energy to heat or cool neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers. In some embodiments, parameters of the neural fibers, of non-target tissue, or of the thermal energy delivery element, may be monitored via one or more sensors for controlling the thermally-induced neuromodulation. In some embodiments, protective elements may be provided to reduce a degree of thermal damage induced in the non-target tissues.
    Type: Grant
    Filed: August 14, 2006
    Date of Patent: November 10, 2009
    Assignee: Ardian, Inc.
    Inventors: Denise Demarais, Nicolas Zadno, Benjamin J. Clark, Erik Thai, Howard R. Levin, Mark Gelfand
  • Publication number: 20090221939
    Abstract: Methods and apparatus are provided for thermally-induced renal neuromodulation. Thermally-induced renal neuromodulation may be achieved via direct and/or via indirect application of thermal energy to heat or cool neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers. In some embodiments, parameters of the neural fibers, of non-target tissue, or of the thermal energy delivery element, may be monitored via one or more sensors for controlling the thermally-induced neuromodulation. In some embodiments, protective elements may be provided to reduce a degree of thermal damage induced in the non-target tissues.
    Type: Application
    Filed: August 14, 2006
    Publication date: September 3, 2009
    Applicant: Ardian, Inc.
    Inventors: Denise Demarais, Nicolas Zadno, Benjamin J. Clark, Erik Thai, Howard R. Levin, Mark Gelfand
  • Publication number: 20090076409
    Abstract: Methods and system are provided for thermally-induced renal neuromodulation. Thermally-induced renal neuromodulation may be achieved via direct and/or via indirect application of thermal energy to heat or cool neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers. In some embodiments, parameters of the neural fibers, of non-target tissue, or of the thermal energy delivery element, may be monitored via one or more sensors for controlling the thermally-induced neuromodulation. In some embodiments, protective elements may be provided to reduce a degree of thermal damage induced in the non-target tissues. In some embodiments, thermally-induced renal neuromodulation is achieved via delivery of a pulsed thermal therapy.
    Type: Application
    Filed: June 28, 2007
    Publication date: March 19, 2009
    Applicant: Ardian, Inc.
    Inventors: Andrew Wu, Benjamin J. Clark, Erik Thai, Denise Zarins
  • Publication number: 20090062873
    Abstract: Methods and system are provided for thermally-induced renal neuromodulation. Thermally-induced renal neuromodulation may be achieved via direct and/or via indirect application of thermal energy to heat or cool neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers. In some embodiments, parameters of the neural fibers, of non-target tissue, or of the thermal energy delivery element, may be monitored via one or more sensors for controlling the thermally-induced neuromodulation. In some embodiments, protective elements may be provided to reduce a degree of thermal damage induced in the non-target tissues. In some embodiments, thermally-induced renal neuromodulation is achieved via delivery of a pulsed thermal therapy.
    Type: Application
    Filed: June 26, 2008
    Publication date: March 5, 2009
    Applicant: Ardian, Inc.
    Inventors: Andrew Wu, Benjamin J. Clark, Erik Thai, Nicolas Zadno, Denise Zarins
  • Publication number: 20080255642
    Abstract: Methods and system are provided for thermally-induced renal neuromodulation. Thermally-induced renal neuromodulation may be achieved via direct and/or via indirect application of thermal energy to heat or cool neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers. In some embodiments, parameters of the neural fibers, of non-target tissue, or of the thermal energy delivery element, may be monitored via one or more sensors for controlling the thermally-induced neuromodulation. In some embodiments, protective elements may be provided to reduce a degree of thermal damage induced in the non-target tissues. In some embodiments, thermally-induced renal neuromodulation is achieved via delivery of a pulsed thermal therapy.
    Type: Application
    Filed: June 26, 2008
    Publication date: October 16, 2008
    Applicant: Ardian, Inc.
    Inventors: Denise Zarins, Nicolas Zadno, Benjamin J. Clark, Erik Thai, Howard R. Levin, Mark Gelfand, Andrew Wu, Hanson Gifford, Mark Deem
  • Patent number: 7004173
    Abstract: A catheter system and corresponding methods are provided for accessing a blood vessel true lumen from a sub-intimal plane of the vessel. The catheter system includes visualization elements for determining the orientation of the true lumen with respect to the sub-intimal plane at an identified entry site from a position in the sub-intimal plane. The entry site is distal to a chronic total occlusion (CTO). The catheter system also includes a system for physically securing tissue of the sub-intimal plane at the entry site to the catheter system. The attaching system reduces or eliminates catheter float within the sub-intimal space. The catheter system further includes re-entry devices to establish and maintain a path from the sub-intimal plane back into the vessel true lumen.
    Type: Grant
    Filed: December 5, 2001
    Date of Patent: February 28, 2006
    Assignee: LuMend, Inc.
    Inventors: Kurt D. Sparks, Jeffrey L. Emery, Brent D. Seybold, David J. Kupiecki, C. Danielle Pinson, Allen W. Madsen, Michael D. Keleher, Sergio Salinas, Benjamin J. Clark, Matthew R. Selmon
  • Publication number: 20020103459
    Abstract: A catheter system and corresponding methods are provided for accessing a blood vessel true lumen from a sub-intimal plane of the vessel. The catheter system includes visualization elements for determining the orientation of the true lumen with respect to the sub-intimal plane at an identified entry site from a position in the sub-intimal plane. The entry site is distal to a chronic total occlusion (CTO). The catheter system also includes a system for physically securing tissue of the sub-intimal plane at the entry site to the catheter system. The attaching system reduces or eliminates catheter float within the sub-intimal space. The catheter system further includes re-entry devices to establish and maintain a path from the sub-intimal plane back into the vessel true lumen.
    Type: Application
    Filed: December 5, 2001
    Publication date: August 1, 2002
    Inventors: Kurt D. Sparks, Jeffrey L. Emery, Brent D. Seybold, David J. Kupiecki, C. Danielle Pinson, Allen W. Madsen, Michael D. Keleher, Sergio Salinas, Benjamin J. Clark, Matthew R. Selmon