Patents by Inventor Benjamin James Hadwen

Benjamin James Hadwen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180284424
    Abstract: A microfluidic system includes an electrowetting on dielectric (EWOD) device comprising an array of elements that are actuatable for manipulation of a liquid droplet within the EWOD device. The system has a pattern generator that generates an actuation pattern for actuating a portion of the elements in the array of elements, and a signal generator that generates voltage signals for actuating elements in the array of elements in accordance with the actuation pattern. The pattern generator generates an actuation pattern in which voltage signals applied to elements in at least part of a region at or adjacent to a contact line of the droplet are different from voltage signals applied to elements that are not in the part of the region at or adjacent to the contact line. The system further may include a sensor for sensing the droplet contact line constituting a boundary of the liquid droplet.
    Type: Application
    Filed: April 4, 2017
    Publication date: October 4, 2018
    Inventors: Christopher James BROWN, Benjamin James HADWEN, Pamela Ann DOTHIE
  • Patent number: 10082481
    Abstract: A pixel circuit acts as a sensing element in a sensing device. The pixel circuit includes a sensing electrode, a first gate electrically connected to the sensing electrode, a second gate in electrical communication with the first gate, and a readout device that is electrically connected to the second gate. An input voltage applied to the sensing electrode is amplified between the first gate and the second gate, the amplification being measured as an output signal from the readout device to perform a sensing operation. For example, the output signal may be relatable to pH, analyte measurements, or other properties of sample liquids analyzed by the sensing device. A sensing device may include multiple pixels disposed on a substrate, each pixel including said pixel circuit. Driver circuits controlled by control electronics are configured to generate signals that selectively address the pixels and to read out voltages at the sensing electrodes.
    Type: Grant
    Filed: July 7, 2016
    Date of Patent: September 25, 2018
    Assignee: Sharp Life Science (EU) Limited
    Inventors: Benjamin James Hadwen, Campbell Donald Brown, Christopher James Brown, Gregory Gay, SAlly Anderson
  • Patent number: 10078986
    Abstract: An active matrix electro-wetting on dielectric (AM-EWOD) device includes a plurality of array elements arranged in an array, each of the array elements including array element circuitry, an element electrode, and a reference electrode. The array element circuitry includes an actuation circuit configured to apply actuation voltages to the electrodes, and an impedance sensor circuit configured to sense impedance at the array element electrode to determine a droplet property at the array element. The impedance sensor circuit is operated by perturbing a potential applied to the reference electrode. The AM-EWOD device includes a common row addressing line. The impedance sensor circuit further is operated by supplying voltage signals over the common addressing line to effect both a reset operation and an operation for selecting a row in the array to be sensed. The circuitry isolates the array element from the actuation voltage during operating the impedance sensor circuit.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: September 18, 2018
    Assignee: Sharp Life Science (EU) Limited
    Inventor: Benjamin James Hadwen
  • Publication number: 20180221882
    Abstract: An EWOD device for processing multiple droplets through multiple temperature zones. The device is configured to achieve a high spatial density of temperature zones with a wide temperature difference between hot and cold zones. A first set of temperature control elements is arranged above (or below) a fluid gap in an EWOD device and a second set of temperature control elements is arranged below (or above) the fluid gap. A temperature control element of one set is offset from temperature control elements of the other set in the plane of the fluid gap. The temperature control element of one set may be located at a different separation from the fluid gap to the temperature control element of the other set. The device has an optional temperature control element and/or arrangement which offsets the low temperature point from the inlet temperature. The two sets of temperature control elements are substantially interacting, in the sense that they cannot be considered to be thermally isolated from one another.
    Type: Application
    Filed: December 6, 2017
    Publication date: August 9, 2018
    Inventors: Phillip Mark Shryane Roberts, Pamela Ann Dothie, Benjamin James Hadwen
  • Publication number: 20180078934
    Abstract: A method of driving an active matrix electro-wetting on dielectric (AM-EWOD) device comprises (i) setting a reference electrode to a first reference voltage; (ii) writing a set of data to array element electrodes of array elements of the device; and (iii) either (a) maintaining the voltages written to the array element electrodes until a time t0 or (b) re-writing the set of data N?1 times (where N?2). The reference electrode is then set to a second reference voltage different from the first reference voltage, and features (i) to (iii) are repeated. When the data are first written, there is a delay between the time when the voltage on the reference electrode is transitioned and the time when a given array element is next written with data.
    Type: Application
    Filed: December 10, 2015
    Publication date: March 22, 2018
    Inventors: Benjamin James HADWEN, Jonathan BUSE
  • Publication number: 20180059056
    Abstract: An electrowetting on dielectric device includes: (a) a first substrate comprising electrodes at a surface of the first substrate configured to effect electrowetting mediated droplet operations; (b) a second substrate spaced from the surface of the first substrate to define an interior volume between the first substrate and the second substrate; (c) a liquid droplet disposed in the interior volume; and (d) a filler fluid disposed in the interior volume and surrounding the liquid droplet, wherein one or both of the liquid droplet and filler fluid contains a surfactant, the surfactant comprising a siloxane group represented by the structural formula: where n?1.
    Type: Application
    Filed: August 30, 2016
    Publication date: March 1, 2018
    Inventors: Peter Neil Taylor, Laura Huang, Benjamin James Hadwen, Pamela Ann Dothie
  • Publication number: 20180011053
    Abstract: A pixel circuit acts as a sensing element in a sensing device. The pixel circuit includes a sensing electrode, a first gate electrically connected to the sensing electrode, a second gate in electrical communication with the first gate, and a readout device that is electrically connected to the second gate. An input voltage applied to the sensing electrode is amplified between the first gate and the second gate, the amplification being measured as an output signal from the readout device to perform a sensing operation. For example, the output signal may be relatable to pH, analyte measurements, or other properties of sample liquids analyzed by the sensing device. A sensing device may include multiple pixels disposed on a substrate, each pixel including said pixel circuit. Driver circuits controlled by control electronics are configured to generate signals that selectively address the pixels and to read out voltages at the sensing electrodes.
    Type: Application
    Filed: July 7, 2016
    Publication date: January 11, 2018
    Inventors: Benjamin James HADWEN, Campbell Donald BROWN, Christopher James BROWN, Gregory GAY, Sally ANDERSON
  • Patent number: 9841402
    Abstract: An EWOD (or AM-EWOD) device includes a reference electrode and a plurality of array elements, each array element including an array element electrode, and control electronics. In a first mode optimized for EWOD actuation, the control electronics is configured to control a supply of time varying voltages to the array element electrodes and the reference electrode, thereby generating an actuation voltage as a potential difference between voltages at the array element electrodes and the reference electrode. The reference electrode includes a first electrical connection and a second electrical connection. In a second mode, the control electronics further is configured to supply an electrical current flow between the first electrical connection and the second electrical connection to generate resistance heat for controlling temperature of the EWOD device. Control may include sensing a temperature of the EWOD device, and switching between operating in the first or second mode based on the sensed temperature.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: December 12, 2017
    Assignee: Sharp Life Science (EU) Limited
    Inventors: Robert Julian Amos, Benjamin James Hadwen, Adrian Marc Simon Jacobs, Emma Jayne Walton, Christopher James Brown, Jonathan Buse
  • Publication number: 20170326524
    Abstract: A method of driving an element of an active matrix electro-wetting on dielectric (AM-EWOD) device comprise applying a first alternating voltage to a reference electrode of the AM-EWOD device; and either (i) applying to the element electrode a second alternating voltage that has the same frequency as the first alternating voltage and that is out of phase with the first alternating voltage or (ii) holding the element electrode in a high impedance state. The effect of applying the second alternating voltage to the element electrode is to put the element in an actuated state in which the element is configured to actuate any liquid droplet present in the element, while the effect of holding the element electrode in the high impedance state is to put the element in a non-actuated state.
    Type: Application
    Filed: December 18, 2015
    Publication date: November 16, 2017
    Inventors: Benjamin James HADWEN, Christopher James BROWN
  • Publication number: 20170320059
    Abstract: An AM-EWOD device comprises: first and second substrates (72,36); first and second array element electrodes (38A, 38B) disposed on the first substrate (72) and defining first and second array elements in the AM-EWOD device; a reference electrode (28) disposed on the first substrate (72); a sensor; and a reference electrode drive circuit (50). The reference electrode drive circuit (50) is configured to drive the reference electrode with a first voltage waveform for actuating an array element or with a second voltage waveform different from the first voltage waveform when performing a sensing operation.
    Type: Application
    Filed: January 7, 2016
    Publication date: November 9, 2017
    Inventor: Benjamin James HADWEN
  • Patent number: 9662651
    Abstract: An active matrix electrowetting on dielectric (AM-EWOD) device includes a plurality of array elements configured to manipulate one or more droplets of fluid on an array, each of the array elements including a corresponding array element circuit. Each array element circuit includes a top substrate electrode and a drive electrode between which the one or more droplets may be positioned, with an insulator layer being interposed between the one or more droplets and the drive electrode; and write circuitry configured to write data to the array element. At least some of the array element circuits include measure circuitry configured to detect a pinhole defect in the insulator layer.
    Type: Grant
    Filed: February 12, 2015
    Date of Patent: May 30, 2017
    Assignee: Sharp Microfluidic Solutions Limited
    Inventor: Benjamin James Hadwen
  • Publication number: 20170076676
    Abstract: An active matrix electro-wetting on dielectric (AM-EWOD) device includes a plurality of array elements arranged in an array, each of the array elements including array element circuitry, an element electrode, and a reference electrode. The array element circuitry includes an actuation circuit configured to apply actuation voltages to the electrodes, and an impedance sensor circuit configured to sense impedance at the array element electrode to determine a droplet property at the array element. The impedance sensor circuit is operated by perturbing a potential applied to the reference electrode. The AM-EWOD device includes a common row addressing line. The impedance sensor circuit further is operated by supplying voltage signals over the common addressing line to effect both a reset operation and an operation for selecting a row in the array to be sensed. The circuitry isolates the array element from the actuation voltage during operating the impedance sensor circuit.
    Type: Application
    Filed: September 15, 2015
    Publication date: March 16, 2017
    Inventor: Benjamin James Hadwen
  • Publication number: 20170074814
    Abstract: An active matrix electro-wetting on dielectric (AM-EWOD) device includes a plurality of array elements arranged in an array, each array element including array element circuitry, an element electrode, and a reference electrode. The array element circuitry includes an actuation circuit configured to apply actuation voltages to the electrodes, and an impedance sensor circuit configured to sense impedance at the array element electrode to determine a droplet property. The actuation circuitry includes a memory capacitor for storing voltage data corresponding to either an actuated state or an unactuated state of the array element, and an input applied to the memory capacitor operates to effect an operation of the impedance sensor circuit. Such input may isolate the array element from the actuation voltage during operation of the impedance sensor circuit, and the memory capacitor may operate as part of the impedance sensor circuit as a reference capacitor for determining the droplet property.
    Type: Application
    Filed: September 15, 2015
    Publication date: March 16, 2017
    Inventors: Benjamin James Hadwen, Christopher James Brown
  • Publication number: 20170056887
    Abstract: A method of determining the result of an assay in a microfluidic device includes the steps of: dispensing a sample droplet onto a first portion of an electrode array of the microfluidic device; dispensing a reagent droplet onto a second portion of the electrode array of the microfluidic device; controlling actuation voltages applied to the electrode array to mix the sample droplet and the reagent droplet into a product droplet; sensing a dynamic property of the product droplet; and determining an assay of the sample droplet based on the sensed dynamic property. The dynamic property is a physical property of the product droplet that influences a transport property of the product droplet on the electrode array. Example dynamic properties of the product droplet include the moveable state, split-able state, and viscosity based on droplet properties. The method may be used to perform an amoebocyte lysate (LAL) assay.
    Type: Application
    Filed: August 28, 2015
    Publication date: March 2, 2017
    Inventors: Benjamin James Hadwen, Adrian Marc Simon Jacobs, Jason Roderick Hector, Michael James Brownlow, Masahiro Adachi, Alison Mary Skinner, Mark Childs
  • Publication number: 20170059523
    Abstract: A method of determining the result of an assay in a microfluidic device includes the steps of: dispensing a sample droplet onto a first portion of an electrode array of the microfluidic device; dispensing a reagent droplet onto a second portion of the electrode array of the microfluidic device; controlling actuation voltages applied to the electrode array to mix the sample droplet and the reagent droplet into a product droplet; sensing a dynamic property of the product droplet; and determining an assay of the sample droplet based on the sensed dynamic property. The dynamic property is a physical property of the product droplet that influences a transport property of the product droplet on the electrode array. Example dynamic properties of the product droplet include the moveable state, split-able state, and viscosity based on droplet properties. The method may be used to perform an amoebocyte lysate (LAL) assay.
    Type: Application
    Filed: August 28, 2015
    Publication date: March 2, 2017
    Inventors: Benjamin James Hadwen, Adrian Marc Simon Jacobs, Jason Roderick Hector, Michael James Brownlow, Masahiro Adachi, Alison Mary Skinner, Mark Childs
  • Patent number: 9539573
    Abstract: In a method of performing dilution of a droplet in an EWOD device, a parent droplet is provided on an electrode array of the EWOD device, wherein the parent droplet has a first concentration of a species. A diluent droplet also is provided on the electrode array of the EWOD device. The method includes controlling actuation voltages applied to the electrode array of the EWOD device to join the parent droplet and the diluent droplet into a product droplet having a diluted second concentration of the species different from the first concentration in the parent droplet. The actuation voltages then are controlled to split the product droplet into one or more daughter droplets having the second concentration of the species. A dilution ratio may be calibrated based on the volumes of the droplets. Serial dilution steps may be performed to generate daughter droplets of different species concentrations at each step.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: January 10, 2017
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Benjamin James Hadwen, Christopher James Brown, Julie Karen Deacon
  • Publication number: 20160375437
    Abstract: In a method of performing dilution of a droplet in an EWOD device, a parent droplet is provided on an electrode array of the EWOD device, wherein the parent droplet has a first concentration of a species. A diluent droplet also is provided on the electrode array of the EWOD device. The method includes controlling actuation voltages applied to the electrode array of the EWOD device to join the parent droplet and the diluent droplet into a product droplet having a diluted second concentration of the species different from the first concentration in the parent droplet. The actuation voltages then are controlled to split the product droplet into one or more daughter droplets having the second concentration of the species. A dilution ratio may be calibrated based on the volumes of the droplets. Serial dilution steps may be performed to generate daughter droplets of different species concentrations at each step.
    Type: Application
    Filed: June 23, 2015
    Publication date: December 29, 2016
    Inventors: Benjamin James Hadwen, Christopher James Brown, Julie Karen Deason
  • Publication number: 20160305906
    Abstract: An EWOD (or AM-EWOD) device includes a reference electrode and a plurality of array elements, each array element including an array element electrode, and control electronics. In a first mode optimized for EWOD actuation, the control electronics is configured to control a supply of time varying voltages to the array element electrodes and the reference electrode, thereby generating an actuation voltage as a potential difference between voltages at the array element electrodes and the reference electrode. The reference electrode includes a first electrical connection and a second electrical connection. In a second mode, the control electronics further is configured to supply an electrical current flow between the first electrical connection and the second electrical connection to generate resistance heat for controlling temperature of the EWOD device. Control may include sensing a temperature of the EWOD device, and switching between operating in the first or second mode based on the sensed temperature.
    Type: Application
    Filed: April 15, 2015
    Publication date: October 20, 2016
    Inventors: Robert Julian Amos, Benjamin James Hadwen, Adrian Marc Simon Jacobs, Emma Jayne Walton, Christopher James Brown, Jonathan Buse
  • Patent number: 9458543
    Abstract: An active matrix electrowetting on dielectric (AM-EWOD) device includes a plurality of array elements configured to manipulate one or more droplets of fluid on an array, each of the array elements including a corresponding array element circuit. Each array element circuit includes write circuitry configured to write data to the corresponding array element for controlling the manipulation of the droplets of fluid, and sensor circuitry configured to sense an impedance present at the corresponding array element. The sensor circuitry is configured to operate in one of a normal mode of sensitivity for detection of a droplet, or a high mode of sensitivity to detect an electric property of an array element hydrophobic surface. The sensor circuitry includes an active element, such as an active capacitor or active transistor, and a capacitance across the active element is different in the normal sensitivity mode as compared to the high sensitivity mode.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: October 4, 2016
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Benjamin James Hadwen
  • Patent number: 9326348
    Abstract: An illumination system comprises at least two light sources (101,102,103) having different emission spectra to one another; a detection circuit (131,132,133) for sensing a light intensity using at least one of the light sources as a photosensor; and driving means (161,162,163) for driving the light source in dependence on the sensed spectral distribution of light. The emission spectrum of a light source with the smallest bandgap overlaps the emission spectrum of a light source with the second-smallest bandgap. The illumination system is possible to measure the intensity of light emitted by the light source with the smallest bandgap by putting the light source with the second-smallest bandgap in detection mode. The illumination system may also sense the spectral distribution of ambient light, to allow the output from the illumination system to be adjusted in dependence on the ambient light.
    Type: Grant
    Filed: March 23, 2008
    Date of Patent: April 26, 2016
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Rakesh Roshan, Benjamin James Hadwen, David James Montgomery, Jonathan Heffernan